Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
PC 12 LG 11 Worksheet2 (Trig Equations) 1. Solve by graphing, if 0 ≤ x < 2π 7. Solve the equation below over each of the given domains. 2sin 2 x − sin x −1 = 0 a. Sin2x + Cos3x = 1.5 b. 3Sinx = x + 1 a. 0 ≤ x < 2π c. x2Sinx = -x € € 2. b. π ≤ x < 2π Find the exact value of A if 0 ≤ A < 2π a. 2SinA + 1 = 0 b. € 3 + 2SinA = 0 c. 0 ≤ x < c. 2TanA = 2 π 2 d. 4SinA + 2 = 2SinA + 1 € d. π 3π ≤x< 2 2 e. π ≤ x < 2π 2 3. Solve to 2 decimal places, if 0 ≤ x < 2π a. 3Sinx + 2 = 0 b. 5Cosx – 4 = 0 € c. 4Tanx + 1 = 2Tanx + 5 4. 5. Why do the equations of SinA = 2 and CosA = -3 have no solutions and TanA = 4 have solutions? Solve exactly using the square root property, if 0 ≤ x < 2π € € a. 2Cos2x – 1 = 0 b. 4Sin2x – 3 = 0 c. 4Tan2x – 4 = 0 6. Solve exactly , if 0 ≤ x < 2π. extraneous roots. a. (2Sinx + 1)(Sinx – 1) = 0 f. −π ≤ x < 0 8. Solve each of the following equations algebraically for x, 0 ≤ x < 2π. Give exact values where possible (otherwise to 2 dec. places). Also, solve over the set of real numbers (give the general solution). a. 2sin x tan x − tan x = 0 Watch for € b. (2Cosx – 1)(Cosx + 2) = 0 c. (Tanx – 1)(Cosx + 4) = 0 € b. tan x − 2cos x tan x = 0 PC 12 LG 11 Worksheet2 (Trig Equations) Answer Key c. cos x tan x − 3tan x = 0 a. 3.84, 4.37 c. 0, 3.44, 6.12 d. 3cos x tan x − tan x = 0 2. a. b. e. tan 2 x = tan x + 2 3. a. 3.87, 5.55 c. 1.11, 4.25 b. 0.64, 5.64 4. SinA and CosA have a range of -1 ≤ A ≤ 1 and the range of TanA is all real numbers. € 1. € € 5. f. sec 2 x − 2sec x = 3 € 9. Use identities to solve each of the following equations algebraically for x, 0 ≤ x < 2π. Give exact values where possible (otherwise to 2 dec. places). Also, solve over the set of real numbers (give the general solution). a. sin2x − sin x = 0 € € e. 1− cos2 x = 3sin x − 2 e. € 7π! 11π! π! , €, € 6 6 2 a. 0, π, € € b. € c. b. d. f. € 7π! 11π! , 6 6 π! 7π! , 2 6 −5π! −π! , 6 6 € € π 5π , (+2nπ, n ∈ I ) 6 6 € π 5π € € 0, π, , (+2nπ, n ∈ I ) 3 3 0,π (+2nπ, n ∈ I ) € 0,π,0.94,5.34 (+2nπ, n ∈ I ) 3π 7π e. 1.11,4.25, , (+2nπ, n ∈ I ) 4 4 f. π,1.23,5.05 (+2nπ, n ∈ I ) €9. a. € € € € € € 11π! π! 7π! , , 6 6 2 c. No solution € € π 5π b. 3 , 3 € a. € d. sin x − cos2x = 0 7π! 11π! π! , , 6 6 2 π 5π c. 4 , 4 € 7. b. cos x + sin2x = 0 c. cos x = cos2x π 2π 4π 5π b. 3 , 3 , 3 , 3 a. € 4π 5π 3 , 3 7π 11π d. 6 , 6 π 3π 5π 7π a. 4 , 4 , 4 , 4 π 3π 5π 7π c. 4 , 4 , 4 , 4 6. 8. € 7π 11π 6 , 6 π 5π c. 4 , 4 b. 0.54, 1.8 € € d. b. c. d. e. π 5π , (+2nπ, n ∈ I ) 3 3 π 3π 7π 11π , , , (+2nπ, n ∈ I ) 2 2 6 6 0, π, 0, 2π 4π , (+2nπ, n ∈ I) 3 3 3π π 5π , , (+2nπ, n ∈ I ) 2 6 6 π (+2nπ, n ∈ I ) 2