Download PC12_LG11_Trig_Eqs2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PC 12 LG 11 Worksheet2 (Trig Equations)
1. Solve by graphing, if 0 ≤ x < 2π
7.
Solve the equation below over each of the
given domains. 2sin 2 x − sin x −1 = 0
a. Sin2x + Cos3x = 1.5
b. 3Sinx = x + 1
a. 0 ≤ x < 2π
c. x2Sinx = -x
€
€
2.
b. π ≤ x < 2π
Find the exact value of A if 0 ≤ A < 2π
a. 2SinA + 1 = 0
b.
€
3 + 2SinA = 0
c. 0 ≤ x <
c. 2TanA = 2
π
2
d. 4SinA + 2 = 2SinA + 1
€
d.
π
3π
≤x<
2
2
e.
π
≤ x < 2π
2
3. Solve to 2 decimal places, if 0 ≤ x < 2π
a. 3Sinx + 2 = 0
b. 5Cosx – 4 = 0
€
c. 4Tanx + 1 = 2Tanx + 5
4.
5.
Why do the equations of SinA = 2 and
CosA = -3 have no solutions and TanA = 4
have solutions?
Solve exactly using the square root property,
if 0 ≤ x < 2π
€
€
a. 2Cos2x – 1 = 0
b. 4Sin2x – 3 = 0
c. 4Tan2x – 4 = 0
6.
Solve exactly , if 0 ≤ x < 2π.
extraneous roots.
a. (2Sinx + 1)(Sinx – 1) = 0
f. −π ≤ x < 0
8.
Solve each of the following equations
algebraically for x, 0 ≤ x < 2π. Give exact
values where possible (otherwise to 2 dec.
places). Also, solve over the set of real
numbers (give the general solution).
a. 2sin x tan x − tan x = 0
Watch for
€
b. (2Cosx – 1)(Cosx + 2) = 0
c. (Tanx – 1)(Cosx + 4) = 0
€
b. tan x − 2cos x tan x = 0
PC 12 LG 11 Worksheet2 (Trig Equations)
Answer Key
c. cos x tan x − 3tan x = 0
a. 3.84, 4.37
c. 0, 3.44, 6.12
d. 3cos x tan x − tan x = 0
2.
a.
b.
e. tan 2 x = tan x + 2
3.
a. 3.87, 5.55
c. 1.11, 4.25
b. 0.64, 5.64
4.
SinA and CosA have a range of -1 ≤ A ≤ 1 and the range
of TanA is all real numbers.
€
1.
€
€
5.
f. sec 2 x − 2sec x = 3
€
9.
Use identities to solve each of the following
equations algebraically for x, 0 ≤ x < 2π.
Give exact values where possible (otherwise
to 2 dec. places). Also, solve over the set of
real numbers (give the general solution).
a. sin2x − sin x = 0
€
€
e. 1− cos2 x = 3sin x − 2
e.
€
7π! 11π! π!
,
€,
€
6
6
2
a.
0, π,
€
€
b.
€
c.
b.
d.
f.
€
7π! 11π!
,
6
6
π! 7π!
,
2 6
−5π! −π!
,
6
6
€ €
π 5π
,
(+2nπ, n ∈ I )
6 6
€ π 5π
€
€
0, π, ,
(+2nπ, n ∈ I )
3 3
0,π (+2nπ, n ∈ I )
€
0,π,0.94,5.34 (+2nπ, n ∈ I )
3π 7π
e. 1.11,4.25, ,
(+2nπ, n ∈ I )
4 4
f. π,1.23,5.05 (+2nπ, n ∈ I )
€9.
a.
€
€
€
€
€
€ 11π! π!
7π!
,
,
6
6
2
c. No solution
€
€
π 5π
b. 3 , 3
€
a.
€
d. sin x − cos2x = 0
7π! 11π! π!
,
,
6
6
2
π 5π
c. 4 , 4
€
7.
b. cos x + sin2x = 0
c. cos x = cos2x
π 2π 4π 5π
b. 3 , 3 , 3 , 3
a.
€
4π 5π
3 , 3
7π 11π
d. 6 , 6
π 3π 5π 7π
a. 4 , 4 , 4 , 4
π 3π 5π 7π
c. 4 , 4 , 4 , 4
6.
8.
€
7π 11π
6 , 6
π 5π
c. 4 , 4
b. 0.54, 1.8
€
€
d.
b.
c.
d.
e.
π 5π
,
(+2nπ, n ∈ I )
3 3
π 3π 7π 11π
, ,
,
(+2nπ, n ∈ I )
2 2 6 6
0, π,
0,
2π 4π
,
(+2nπ, n ∈ I)
3 3
3π π 5π
, ,
(+2nπ, n ∈ I )
2 6 6
π
(+2nπ, n ∈ I )
2
Related documents