Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 8 CHAPTER 3 TEST SPRING 2010 Find the inverse function f-1 of the function f. Find the domain of the function f and of its inverse function f-1. (Make the answers clear) 1) f(x) = -6 cos(4x) Find the exact value of the expression. 2) csc-1 - 2 Use a calculator to find the value of the expression in radian measure rounded to two decimal places. 10 3) cot-1 9 Find the exact value of the expression. Do not use a calculator. 6 4) tan-1 tan 7 tan-1 [tan (- 7 )] = - 7 Find the exact value, if any, of the composite function. If there is no value, say it is "not defined" and explain why it is not defined. Do not use a calculator. 5) sin[sin-1 (1.6)] undefined because sine is defined between -1 and 1 inclusive of both. 1.6 is out of this interval. Find the exact value of the expression. 8 6) sec sin -1 9 7) cos tan -1 5 5 - csc-1 8 2 tan = 5 8 csc = 5 2 5 2 + 8 2 = r2 2 2 + x2 = 52 x2 = 25 - 4 25 + 64 = r 89 = r cos - = 8 89 21 + 5 5 2 89 5 = x = ± 21 8 21 10 8 21 + 10 + = · 5 89 5 89 5 89 1 89 8 1869 + 10 89 = 445 89 Find the exact value of the expression using a sum/difference formula AND a half angle formula. 8) cos 12 5 6 cos 1 + cos = 2 5 6 2 1+ = 3 2 2 = 2- 3 2 = 2 2- 3 = 4 22 3 Use the information given about the angle , 0 2 , to find the exact value of the indicated trigonometric function. 3 3 < <2 Find sin . 9) sin = - , 5 2 2 3 < < 4 2 1sin 2 = 4 5 2 = 5-4 5 2 = 1 10 = 10 10 Find the exact value of the expression. tan 95° - tan (-25°) = tan 95° - - 25° = tan 120° = 10) 1 + tan 95° tan (-25°) 3 Find the exact solution of the equation. 11) 7 cos-1 x - = 5 cos-1 x 2cos-1 x = cos-1 x = cos 2 2 =x x=0 Find the real zeros of the trigonometric function on the interval 0 12) f(x) = 4 cos2 x - 3 0 = 4 cos2 x - 3 3 = cos2 x 4 3 = cos x 2 ± 6 , 5 1 , , 6 6 6 2 x<2 CHOOSE 3 OUT OF THE FOUR ONLY. Solve the equation on the interval 0 2 = 13) cos 2 2 2 2 2 2 = = = 8 14) 4 = = , = 2 8 4 2 - + 2k 2 - + 2k 4 8 + 2k 4 = <2 . 2 2k 2 = + 8k 8 = = 8 + 8 8 = 11 8 = 8 + 2k 4 + 2k 4 8 + 2k 4 = 4 = + = 2 + 2k 2 + 8k 8 k= 0 8 + 8 8 = 3 9 11 , , 8 8 8 3 tan 2 3 tan 2 = tan - tan =0 tan 3 tan - 1 = 0 tan = 0 3 tan - 1 = 0 = 0, 3 tan = 1 tan = 0, , = 1 3 = 3 3 7 6 6 , 5 6 6 , 15) cos(2 ) = sin 1 - 2sin 2 = sin 0 = 2sin 2 0 = 2sin 2sin 2sin sin = + sin - 1 - 1 sin + 1 -1=0 =1 1 = 2 6 , 6 sin sin = +1=0 = -1 3 2 6 , 6 , 3 2 3 17 8 = 8 + 16k 8 = 8 k= 1 16) sin = - 2 - cos sin + cos = - 2 1 sin 2 + 1 cos 2 = - 2 sin 2 + 2 cos 2 = -1 cos sin + sin cos sin + = -1 sin + = + 4 = 4 12 + 12 = r= 2 2 cos = 2 2 4 = = 4 4 < 2 . Round the answer to two decimal places. 2 5 2 = 5 66.42° 1.16rad 360 - 66.42° 293.58° 2 - 1.16 5.12 CHOOSE 3 OUT OF THE 5 ONLY. Establish the identity. sin 3 - cos3 = 1 + sin cos 18) sin - cos sin - cos sin 2 + sin cos sin - cos sin2 + sin cos 1 + sin cos 19) 2 2 = -1 Use a calculator to solve the equation on the interval 0 17) 2 sec = 5 5 sec = 2 cos-1 sin = = -1 - = 2 3 2 6 4 cos 1+ 1= sin( - ) = cot sin sin + cos2 = = = 1 + sin cos - cot sin cos - cos sin sin sin = cos sin - = cot - cot cos sin + cos2 = cot - cot 4 20) cos cos2 x x 2 - sin = 1 - sin x 2 2 x x x x - 2cos sin + sin2 2 2 2 2 1 - sin 2 x 2 = 1 - sin x 21) = = 1 - sin x sin(7 ) + sin(3 ) = cos(2 ) 2 sin(5 ) 2sin 7 +3 2 cos 2 sin(5 ) 2sin 10 2 cos 2 sin(5 ) 2sin cos 2 sin(5 ) cos(2 ) 4 2 7 -3 2 = = = = cos(2 ) 22) ln 1 + sin u + ln 1 - sin u = 2 ln cos u ln 1 + sin u 1 - sin u = ln 1 - sin2 u = ln cos 2u = 2 ln cos u = 2 ln cos u BONUS. YOU MUST COMPLETE THE ENTIRE TEST FIRST IN ORDER FOR THIS TO BE COUNTED. Find the exact value of the expression. (10 POINTS) 12 23) cos 3 tan-1 5 5