Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Test of microchannel plates in magnetic field up to 4.5 T. A.Yu. Barnyakov, M.Yu. Barnyakov, S.V. Karpov, A.A. Katcin, V.G. Prisekin Budker Institute of Nuclear Physics, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia Novosibirsk MCP PMT design Data processing • Multialkali photocathode • 2MCP with ∅10µm channels • 2MCP with ∅8µm channels • 2MCP with ∅6µm channels • 2MCP with ∅3.5µm channels, L/∅~90 • 3MCP with ∅8µm channels Amplitude, ch • Integrated charge of single photoelectron signals is used for gain evaluation • Linear fit of signal front is used for time determination. • Time of signal is determined as inCFDatthe½ofamplitude 3500 χ2 / ndf 8.052 / 10 p0 −1.38e+04 ± 575 p1 338.6 ± 11.62 PC σT, ps σT, ps γ GENERATOR 1500 ΔT 1000 25 15 10 5 0 0 500 1000 1500 2000 2500 3000 Amplitude, ch 150 50 100 150 200 Time, ns To minimize systematic time dependence on signal amplitude the amplitude is adjusted to 1000ch of digitizer with help of attenuator (0÷40 dB) 40 30 200 PMT signal 500 20 MCP1 365.1 ± 2.955 2000 35 250 p1 2500 Setup • Magnet bore – ∅120mm • Stable operation up to 4.5 T B • Inhomogeneity of field in central part with ø5cm <0.6% • Light source is PiLas (λ=823nm; pulse FWHM=35ps; sync jitter 4ps) • Digitizer CAEN V1742 (DRS4) • Preamplifier CAEN(1.5GHz) – 45dB PiLas sync 3000 0 PiLas: tpulse=30ps; TRG jitter ~ 4ps; λ=409 nm300 χ 2 / ndf 0.2769 / 2 p0 − 4.856e+04 ± 401 MCP2 100 50 +φ −φ 0 0 CAEN ADC V1742 (DRS4) 500 1000 1500 2000 2500 3000 Aplutude, ch Impact of electronic and procedure Gain of MCP PMTs in strong magnetic field 10−1 10−2 PMT9424(8µ m) PMT9515(8µ m) 10 −3 0 0.5 1 1.5 2 2.5 3 3.5 4 10 4.5 Magnetic Field, T 0 0.5 1 1.5 PMT115(6µm) PMT75(6µm) −3 2 2.5 3 3.5 4 10 4.5 Magnetic Field, T 0 0.5 1 10−2 1.5 2 2.5 3 3.5 4 4.5 Magnetic Field, T PMT557(8µm; 3MCP) U =2.8kV MCP PMT557(8µm; 3MCP) U =3.0kV PMT74423(3.5µm; L/d=90) −3 10 1 10−1 10−2 10−2 PMT80565(10µm) PMT82015(10µm) 1 10−1 10−1 10−2 −3 1 Relative Gain 10−1 1 Relative Gain 1 Relative Gain Relative Gain Relative Gain Initial Gain(0 T) ≈ 2÷5106 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 10−3 Magnetic Field, T MCP 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Magnetic Field, T Gain decrease at 4T: 2MCP, 10µm – 25÷30 times 2MCP, 8µm – 14÷17 times 2MCP, 6µm – 4÷5 times 2MCP, 3.5µm(L/∅~90) – 20 times 3MCP, 8µm – 80÷90 times Timing properties in magnetic field 2MCP, 10µm 2MCP, 8µm 2MCP, 6µm σT(4T)~40ps σT(4T)~45÷55ps σT(4T)~40ps 80 σT(4T)~50÷60ps PMT115(6µm) 90 PMT75(6µm) 80 100 σT, ps 80 PMT9424(8µm) PMT9515(8µm) 90 σT(4T)~36ps σT, ps PMT82015(10µm) σT, ps σT, ps PMT80565(10µm) 90 3MCP, 8µm 100 100 100 PMT74423(3.5µ m; L/d=90) 90 80 90 80 70 70 70 70 70 60 60 60 60 60 50 50 50 50 50 40 40 40 40 40 30 30 30 30 30 20 20 20 20 20 10 10 10 10 10 PMT557(8µ m; 3MCP) U =2.8kV MCP PMT557(8µ m; 3MCP) U =3.0kV MCP 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 4.5 Magnetic Field, T 0 0.5 1 1.5 2 2.5 3 3.5 4 0 4.5 Magnetic Field, T 0 0.5 1 1.5 2 2.5 3 3.5 4 0 4.5 Magnetic Field, T 0 0.5 1 1.5 2 2.5 3 3.5 4 0 4.5 Magnetic Field, T 0 0.5 1 1.5 2 2.5 3 3.5 4 1 10−1 100 Angle 0 o Angle +20 o Angle +30 o Angle -20 o Angle -30 o Angle -40 o Angle -50 1.4 1.2 90 80 70 1 60 0.8 50 40 0.6 o Angle 0 σT, ps Relative efficiency Angular dependence of 2MCP, 6µm PMT properties on magnetic field o o Angle +20 o Angle +20 o Angle +30 0.4 o Angle -20 20 1 1.5 2 2.5 3 3.5 4 4.5 Magnetic Field, T 0 Angle -40 10 o Angle -50 0.5 o Angle -30 o 0.2 o Angle -40 0 o Angle -20 o Angle -30 10−2 o Angle +30 30 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Magnetic Field, T VCI2016 - The 14th Vienna Conference on Instrumentation 0 o Angle -50 0 0.5 1 1.5 2 2.5 3 3.5 4.5 Magnetic Field, T Time resolution is presented without electronic impact subtraction Relative Gain σT, ps 100 2MCP, 3.5µm@L/∅~90 4 4.5 Magnetic Field, T