Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Transfer Function LTI System an dc d n 1c d nc a a 1 a 0 c n 1 n n 1 dt dt dt Modeling bm G s M. Sami Fadali Professor of Electrical Engineering University of Nevada dr d m1r d mr b b1 b0 r m 1 m m 1 dt dt dt C s b s m bm1 s m1 b1 s b0 m n R s zero IC a n s a n 1 s n 1 a 1 s a 0 Example 1 Response of LTI System • Convolution Theorem: Example: Transfer Function of Point Mass = impulse response L f ( t ) m x L x F ( s) m s 2 X ( s) G ( s) L • Impulse Input 2 1 X ( s) F ( s) m s 2 f m F(s) 1 s • The transfer function and the impulse response are Laplace transform pairs. 3 1 1 t2 X (s) 2 x(t ) 2m ms s 4 Analytical Modeling Relations • Physical systems store and dissipate energy. • Lumped idealized elements: represent energy dissipation and energy storage separately. • Physical elements may approximate the behavior of the idealized elements. • Physical elements are not lumped. They involve both energy dissipation and energy storage. • Constitutive (elemental) Relations – Govern the behavior of the idealized elements. – Hold only approximately for physical elements. • Connective Relations – Govern connections of elements. – Often derived from conservation laws. 5 Electrical Systems • • • • 6 Constitutive Relations for R, L, C Table 2.3 Ideal R: energy dissipation. Ideal L: magnetic energy storage. Ideal C: electrostatic energy storage. Connective Relations: Kirchhoff’s Laws Impedance Admittance – Current Law: conservation of charge – Voltage Law: conservation of energy 7 8 Cramer’s Rule Mesh Analysis a11 a12 x1 b1 a 21 a22 x2 b2 1. Replace passive elements with Z(s). 2. Define clockwise current for each mesh. 3. Write KVL in matrix form with source voltages that drive clockwise current positive. 4.Use Cramer’s rule to solve for the transfer function. • Provided that a solution exists b1 x1 b1 a21 a22 a11 a12 a11a22 a12a21 a21 a22 Example: Mesh Analysis 10 Cramer’s Rule Z 1 1 sC Vi Z 1 L1 s R1 R2 R2 L1 s R1 L1 s R1 R2 a11 b2 a22 a b , x2 21 2 a11 a12 a11 a12 a21 a22 9 a12 + i I 2 ( s) C Z(s)I(s) Vi (s) 1 sC Z1 1 sC I1 (s) Vi (s) 1 sC R L s 1 sC I (s) 0 2 3 2 G(s) Vo (s) R3 I 2 (s) 11 1 sC 0 i 1 sC Z 1 1 sC 1 sC R3 L2 s 1 sC Vo R3 I 2 ( s ) Vi Vi R3 sC Z1 1 sC R3 L2 s 1 sC 1 sC 2 12 Example: Node Analysis Node Analysis 1.Replace passive elements with Y(s). 2. For each node, define a node voltage relative to a reference node. 3. Write KCL in matrix form with source currents that drive current into a node positive. 4.Solve for the transfer function using Cramer’s rule. R1 Change voltage source to current source. Vs/Rs L1 Rs L2 R3 R2 13 14 Node Equations Y(s)V(s) I(s) G 1/ R,Vo Vc 1 Gs G1 sL 1 1 sL1 G1 1 sL1 1 1 G2 sL1 sL2 1 sL2 Va Gs G1 R1 L1 Rs R2 Vb 1 Vs Vo Vs/Rs L2 R3 G1 Va ( s ) Vs ( s )Gs 1 V ( s ) 0 b sL2 ( ) 0 V s 1 c G1 G3 sL2 15 V G ( s) o Vs 1 sL1 1 sL1 G1 Gs G1 1 sL1 G1 1 sL1 1 sL1 1 1 G2 sL1 sL2 1 sL2 1 sL1 1 1 G2 sL1 sL2 1 sL2 Vs Rs 0 0 G1 1 sL2 G1 G3 1 sL2 16 a) Ideal Spring Translational Mechanical Systems • • • • • Elastic energy (neglect plastic deformation) • Linear element: force proportional to the . deformation k • No energy dissipation f • No mass x x Ideal Damper b: energy dissipation. Ideal Spring k: potential energy storage. Pure Mass m: kinetic energy storage. Connective Relations: Newton’s 2nd Law 1 17 b) Ideal Viscous Damper 2 18 c) Point Mass f • Energy dissipation • No mass x1 b x2 •Perfectly rigid • No elastic deformation •No dissipation • Linear element: force proportional to rate of deformation . •Linear element f m x 19 20 Constitutive Relations for Spring, Mass, Damper Ex. Mass-Spring-Damper m x f f s f d f k x b x m x b x kx f X s 1 G s 2 F s ms bs k k f(t) m b x 21 Example 2.11 22 Transfer Function (Cramer’s Rule) m1 x 1 b1 x 1 b3 x 1 x 2 k 1 x 1 k 2 x 1 x 2 f G s m2 x 2 b2 x 2 b3 x 2 x 1 k 3 x 2 k 2 x 2 x 1 0 2 1 m1s b1 b3 s k1 k 2 F 0 b3 s k 2 F 2 m1s b1 b3 s k1 k 2 b3 s k 2 2 m2 s b2 b3 s k 2 k3 b3 s k 2 b3 s k 2 m1 s 2 b1 b3 s k1 k 2 X 1 F 2 m2 s b2 b3 s k 2 k 3 X 2 0 b3 s k 2 23 X2 F b3 s k 2 m1s b1 b3 s k1 k2 m2 s 2 b2 b3 s k2 k3 b3 s k2 2 2 24 3-D.O.F. Translational Mechanical System Rotational Mechanical Systems Three equations of motion. 25 26 Example 2.19 Transfer Function (Cramer’s Rule) J11 D11 K 1 2 2 1 J1s D1s K 0 K 2 G ( s) 2 J1s D1s K K J 2 s 2 D2 s K K J 22 D22 K 2 1 0 J1s2 D1s K 1 K 0 2 K J s D s K 2 2 2 K J1s 2 D1s K J 2 s 2 D2 s K K 2 27 28 Example 2.20 Gears N1 1 1 Assume: 1- No losses. 2- No inertia. 3- Perfectly rigid. J11 D11 K 1 2 J 22 D2 2 3 K 2 1 0 J 33 D2 3 2 D33 0 J1s D1s K 1 K 0 2 K J s D s K D s 2 2 2 2 0 0 D2 s J3s2 D2 D3s3 0 2 N2 J 2 2 Single velocity at point of contact Equal arc length 29 30 Energy Storage Energy Balance • Translation • Assume no losses • Mass • Trade speed for torque • Spring N2 > N1 : output side slower but delivers more torque • Rotation N2 < N1 : output side faster but delivers less torque • Spring 31 • Inertia 32 Equivalent Inertia Energy Dissipation N1 1 1 E J 112 J 2 22 2 2 • Power dissipated • Translation 2 J 1 2 N1 J 2 1 N 2 N J e J1 J 2 1 N2 • Rotation 1 , 1 2 N2 2 J 2 , 2 Equivalent to inertia on output side no. teeth of destination Je J no. teeth of source 2 33 Effect of Loading Output Side on Input Side 34 Damper and Spring N1 Damper 1 , 1 Inertia J N2 2 , 2 2 J2 N N2 1 J 1 1 N1 N2 N Je 1 J 1 1 N2 2 2 2 Spring 1 2 no. teeth of destinatio n J no. teeth of source 2 N no. teeth of destinatio n De 1 D 1 D 1 no. teeth of source N2 N no. teeth of destinatio n Ke 1 K 1 K 1 no. teeth of source N2 1 , 1 2 2 2 , 2 35 36 Example (Special Case) Example Db ,m N1 Jb Jg L 2 JL K DL N2 J s e 2 • Two equations of motion. • Cannot simply add all rotational masses! N De s K 2 ( s ) T2 ( s ) 2 T1 ( s ) N1 37 38 Solution Gear Train l 2 3 l 1 1 2 l 1 Redraw the schematic with (i) added “e” for elements (and variables) moved, and (ii) gears removed. Dbe e,me Jbe N N N 1 3 2l 3 N 2 N 4 N 2l 2 ne L 2 Jge 1 N1 N2 N3 2 l-1 3 N4 l l 1 1 ne JL K DL J l ne2 J1 39 Bl ne2 B1 K l ne2 K1 40 DC Motor TFs of Electromechanical Systems • Electrical Subsystem – Varies with motor type – armature (rotor) conductors current – field (stator) conductors or permanent magnet • Mechanical Subsystem – Varies with load. – Write equations of motion. DC motor armature (rotor) DC motor. National Instruments: http://zone.ni.com/devzone/cda/ph/p/id/52 41 42 Torque Equation • Magnetic flux Field Control Wb • Changing • Force r = conductor length = magnetic flux density f and fixing • Back EMF (Faraday’s Law) • Voltage induced in moving coil proportional to the rate of cutting of lines of magnetic flux. = armature (rotor) current is only approximately constant through the use of high resistance (inefficient) Control • Vary torque by changing or 43 44 Armature Control • Changing and fixing Schematic Za • Used in practice. Za ea 1 vb • KVL ea N1 vb D2 J2 J1, D1 2 N2 K 45 L 46 Mechanical Subsystem Matrix Form Equations of motion for rotational system J11 D11 K e 1 L' K t ia J 2 eL' D2 eL' K e L' 1 0 J 11 D11 K e 1 L' K t ia J 2 eL' D2 eL' K e L' 1 0 , 1 D1 Kb s J s2 D s K 1 e 1 Ke D2e J2e J1 L 0 Ke J 2 e s D2 e s K e 2 La s Ra 1 Ea K t 'L 0 0 I a 0 Ke 47 48 Evaluation of Motor Parameters Transfer Function Dynamometer measure speed & torque for constant Dynamometer Test gives speed-torque curves supplied by manufacturer Assume ' N N G(s) L L 1 2 Ea Ea Kbs Ea La s Ra 1 2 N1 N2 J1s D1s Ke 0 Kt Ea 0 0 Ke Kb s 0 La s Ra J1s2 D1s Ke Ke Kt 2 J2e s D2es Ke 0 Ke 500 =stall torque =no-load speed Torque (N-m) 400 N1 N 2 K e K t ea= 100 V 300 200 100 La s Ra J1s 2 D1s K e J 2e s 2 D2e s K e K e2 K t K b sJ 2e s 2 D2e s K e 0 0 10 20 30 40 50 Speed (rad/s) 49 Solve for Parameters 50 Transfer Function Ra ea J e s De m ( s) K t I a ( s) K t vb • Stall torque: G(s) T, m • No-load speed: m (s) K t Ra Ea ( s ) J e s De K t Ra K b Da JLe Ja DLe 51 Ea ( s ) K b m ( s ) Ra J e J a J Le De Da DLe 52 Linearity Nonlinearities (i) Homogeneity (ii) Additivity • Affine 53 54 Equilibrium Point Linearization 1st order approximation (in the vicinity of • System at an equilibrium stays there unless perturbed. ) • Set all derivatives equal to zero for equilibrium. 80 = value of forcing function at equilibrium 60 • Cancel constants 40 and 20 for small 0 0 2 4 6 8 55 56 Linearized Differential Equation In the Vicinity of the Equilibrium Special case: nonlinearity in output only dc d c c0 dc d i c d i c Similarly i , i 1,2,, n dt i dt dt dt dt n 1 d c d c dc a n 1 a1 f ( c ) f ( c 0 ) r r0 r n 1 n dt dt dt n d n c d n 1 c d c df a 1 a 0 c r , a 0 a n1 n n1 dt dc dt dt c0 Linear: can Laplace transform to get the TF 1st order approximation d n c d n1c dc df a a1 c r n 1 n n 1 dt dc c0 dt dt G ( s) C 1 n n1 R s a n 1 s a n 2 s n 2 a 1 s a 0 57 58 Example: Pendulum Procedure Moment of inertia 1. Determine the equilibrium point(s). 2. Find the first order approximation of all nonlinear functions. 3. Rewrite the system differential equation in terms of perturbations canceling the constants using Step 1. 59 Equation of Motion • Linearize about = 30o • Equilibrium at = 30o sin( ) 60 Linearization Potentiometer • Using Trigonometric Identity sin 30 o sin 30 o cos cos30 o sin • • • • 1 2 3 2 cos 1 sin • Using 1st order approximation formula sin sin30 o d sin d 30o sin30 o cos30 o 10 turns 1 turn = 2 rad 20 V Pot Gain = 20/(10 X 2 ) = (1/ ) V/rad J B mgl 1 2 3 2 0 J B mgl 3 2 61 Fluid Systems Linearized Model h=Rq Conservation of Mass dCh Q qin Q qo dt C Area C qi h H qo dh h dh qin h Rqin dt dt R R h( s ) qin ( s ) s 1 63 62