Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Reduction of Order - (3.2) Consider the 2nd-order linear differential equation a 2 x y UU a 1 x y U a 0 x y 0 The general solution of the equation y C 1 y 1 C 2 y 2 where y 1 , y 2 is a fundamental set of solutions, i.e. they are solutions of the equation and are linearly independent. If we know y 1 , how can we find y 2 ? Consider the 2nd-order linear differential equation in standard form y UU Px y U Qx y 0 Let y 2 y 1 u. Then y U2 y U1 u y 1 u U and y UU2 y UU1 u y U1 u U y U1 u U y 1 u UU y UU1 u 2y U1 u U y 1 u UU . y UU Px y U Qx y y UU1 u 2y U1 u U y 1 u UU Px y U1 u y 1 u U Qx y 1 u y UU1 Px y U1 Qx y 1 u 2y U1 u U y 1 u UU Px y 1 u U 0 y 1 u UU 2y U1 Px y 1 u U 0 u UU zU 2y U1 U U U UU y 1 Px u 0, let z u . Then z u 2y U1 y 1 Px z 0 " It is 1st order linear differential equation in z. It is also separable. 2y U1 linear in z : y 1 Px z 0 : 2y U i. hx ; y 11 Px dx 2 ln|y 1 | ; Px dx Solve z U integrating factor: e hx e ii. kx 0 iii. z e ; "2 ln|y 1 |" Px dx ; 2 ln|y 1 | Px dx y 21 e ; Px dx "; Px dx C 0 C 12 e y1 Steps to Compute y 2 for a Given y 1 : 1. Compute hx ; Px dx. 2. Compute z 12 e "hx . y1 3. Find u ; zx dx. 4. y 2 u y 1 . Example 1 Show that y 1 x 2 cosln x is a solution of x 2 y UU " 3xy U 5y 0. 2 Find the general solution of the differential equation. 1 Verify: y U1 2x cosln x " x 2 sinln x 1x x2 cosln x " sinln x , y UU1 2 cosln x " sinln x x "2 sinln x 1x " cosln x 1x cosln x " 3 sinln x x 2 y UU " 3xy U 5y x 2 cosln x " 3 sinln x " 3xx 2 cosln x " sinln x 5x 2 cosln x x 2 " 6x 2 5x 2 cosln x "3x 2 3x 2 sinln x 0 2 Rewrite the equation: xy UU " 3x y U 5x y 0: Px " 3x 1 1. hx ; " 3x dx "3 ln|x| 1 1 1 e 3|x| 4 2. z 4 1x sec 2 lnx x 3 x cos 2 lnx x cos 2 lnx x cos 2 lnx 3. u ; zdx ; 1x sec 2 lnx dx tanlnx 4. y 2 tanln x x 2 cosln x x 2 sinln x 5. The general solution: y C 1 x 2 cosln x C 2 x 2 sinln x 2