Download Solutions to Algebra Practice Set I

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fall 2005
Algebra Practice for Enriched Calculus
Solutions
Set I
Parentheses
Simplify the following expressions using two methods:
a) By doing the arithmetic within the parentheses first
b) By using the distributive property and multiplying first
1.
4 – (5 – 3) + 3(4 – 7) – 4(1 + 2)
a) = 4 – 2 + 3(-3) – 4(3) = 4 – 2 – 9 – 12 = -19
b) = 4 – 2 + 12 – 21 – 4 – 8 = -19
2.
-2(3 – 4) + 4(5 + 3) – 3(2 – 6)
a) = -2(-1) + 4(8) – 3(-4) = 2 + 32 + 12 = 46
b) = -6 + 8 + 20 + 12 – 6 + 18 = 46
3.
2 – (3 –
1
)
4
+ (2.4 - 3.2) – (1.2 – 2.3)
3
+ (-.8) – (-1.1) = -.45
4
1
b) = 2 – 3 +
+ 2.4 – 3.2 – 1.2 + 2.3 = -.45
4
a) = 2 – 2
€
Part 2:
€
€
1. x(y + z) – z(x + y) + 2y(x – z) – x(3x – 2z) = xy + xz – zx – zy + 2yx – 2yz – 3x2 + 2xz
= 3xy –3yz + 2xz – 3x2
2. (s – t) – (u – t) – (v – u) – (s – v) = s – t – u + t – v + u – s + v = 0
3. 2x(y – 3) – (x + xy) + 2y(x + 1) = 2xy – 6x – x – xy + 2yx + 2y = 3xy – 7x + 2y
4. xy(x + y2) – (2x2y2 – 2xy3) – 2y2(x2 – 2y + xy)
= x2y + xy3 – 2x2y2 + 2xy3 – 2y2x2 + 4y3 – 2xy3 = x2y + xy3 – 4x2y2 + 4y3
5. xy2 (x2 + y2) – 3x(2xy2 – 2xy3) + 2y2(x – xy2 – x2)
= x3y4 + xy4 – 6x2y2 + 6x2y3 + 2xy2 – 2xy4 – 2x2y2
= x3y4 – xy4 + 2xy2 – 8x2y2 + 6x2y3
Cancellation
Simplify the following fractions by factoring and identifying factors that the numerator and
denominator have in common.
1.
5 8
1 1 1
• = • =
16 10 2 2 4
2.
−1 −9 −1 −3 3
•
= • =
3 5
1 5
5
3.
−1 9
•
= −1 • 3 = 3
3 −5
1 −5 5
€
€
4.
€
5.
€
€
€
2
2
= 3π •
7
3
2π
=
9π
14 π
=
9
14
x s y u
• • • =1
y u s x
2.
(3x + 6) = 3( x + 2) = ( x + 2)
(6x + 42) 3(2x + 14) 2( x + 7)
3.
7x 3y + 2 21xy + 14 x
•
=
3y
x
3xy
€
= 7x (3y + 2) = 7(3y + 2)
3xy
 x + 2  1− y  x − xy + 2 − 2y
4. 
=
 •
x + xy
 1+ y   x 
5.
xy w 2 z
•
wz x 2 y 2
6.
xy
w
xy − 2x
w
€
€
1
2
Part 2:
€
€
= π •π = π
15 12 7 3 3 1 9
• • = • • =
28 5 8 4 1 2 8
3π
6. 7
2π
3
1.
€
2π 3π
•
3
4
=
w 2 xyz
=w
2 2
wx y z xy
= xy •
w
w
xy − 2x
=
xy
= y
x ( y − 2) y − 2
3y
€
€
7.
xy
( x − y)
x2 y3
•
y x
8.
xy
( x + y)
x2y
3
( x + y)
x2y2
x3y3 − x2y4
=
xy
yx
• 2 3
x−y x y
=
xy
( x + y)
•
( x + y) x 2 y
=
3
=
=
x2y2
= 1 2
2 2
2
x y ( xy − y ) ( xy − y )
xy ( x + y )( x + y )
xy ( x )( x + y )
2
= ( x + y)
x
2
Common Denominators
1.
1 4 1 1 1 3
4
3
7
+ = • + • = + =
3 4 3 4 4 3 12 12 12
2.
2 1 1 2 6 1 15 1 10 12 15 10
− + = • − • + • =
−
+
=7
5 2 3 5 6 2 15 3 10 30 30 30 30
3.
1 1 1 1
1 8 1 4 1 2 1
− + − = • − • + • −
2 4 8 16 2 8 4 4 8 2 16
4.
5 4 2 3 15 24 4 27 −32
− + − = −
+ − =
= − 16
6 3 9 2 18 18 18 18
18
9
5.
1 2
+
3 5
3
2
6.
1 2
−
4 3=
3 2
−
2 5
€
€
€
€
€
€
=
6  2 11 2 22
• = • =
15  3 15 3 45
3 8
−
12 12
15 4
−
10 10
= − 5 • 10 = − 5 • 5 = − 25
12 11
6 •11
66
1.
1 1 1 y 1 x
+ = • + •
x y
x y y x
2.
1 1
x
y
− =
−
y x
xy xy
3.
4 2 1 4 yz 2 xz 1 xy 4 yz − 2xz + xy
− + = • − • + • =
x y z x yz y xz z xy
xyz
4.
s t u
s s t st u tu s2 + st 2 + tu 2
+ + = • + • + • =
tu u s tu s u st s tu
stu
5.
1 x +1 x − 2
−
+
= yz − z( x + 1) + y ( x − 2) = yz − zx − z + yx − 2y
x
xy
xz
xyz
xyz
xyz
xyz
6.
1 1
−
x y
1 1
+
x y
€
€
€
€
15
+
8 4 2 1
− + −
16 16 16 16
Part 2:
€
€
=  5
=
= y−x•
xy
= y+x
xy
= x−y
xy
xy
y+x
= y−x
y+x
5
16
7.
1 x
−
y z
1 1
−
z x
8.
1  1 1 1  1 1 1  z − y  1  z − x  z − y − z + x x − y
=
=
 − −  − = 
− 
x  y z  y  x z  x  yz  y  xz 
xyz
xyz
9.
1 1
−
st w
1 2
−
tw s
€
€
€
10.
€
€ 12.
€
yz
2
xz
= xz − x y
x−z
xy − yz
= w − st •
stw
= x (z − xy )
y ( x − z)
stw
= w − st
s − 2tw s − 2tw
 3 4   2 2  2  3x − 4 x 2   2y 2 − 2y  2y 3x − 4 x 2 2y 2 − 2y
2
+ x −  − y −  = + 
+
−
 −
=
x
xy
xy
 xy y   x xy  x  xy   xy  xy
= 2y
11.
= z − xy •
2
+ 4 y + 3x − 4 x 2
xy
4 yz 2z
1
4 y 3 z 2xz 2
xy
4 y 3 z − 2xz 2 + xy
−
+
=
−
+
=
x 2 xy 2 xyz x 2 y 2 z x 2 y 2 z x 2 y 2 z
x 2 y 2z
1 x
−
x−y
x y
+
2y 2x
xyz
+
x
y
= y−x
xy
2
•
xy
x−y
+
2
2
2y + 2x
xyz
xyz y − x ) + ( x − y )(2y
= ( )(
xyz(2y + 2x )
2
2
2
2
+ 2x 2 )
Other Important Things You Need to Know
€
€
€
€
€
€
€
1.
(2x + 3y )( x − y + z) = 2x 2 − 2xy + 2xz + 3xy − 3y 2 + 3yz = 2x 2 + xy + 2xz − 3y 2 + 3yz
2.
(3x
2
3.
(y
− 4 y + 1)( x 2 + 6) = x 2 y 2 + 6y 2 − 4 x 2 y − 24 y + x 2 + 6
4.
( x − y )( x + y ) = x 2 + xy − yx − y 2 = x 2 − y 2
5.
(2x + y )(2x − y ) = 4 x 2 − 2xy + 2yx − y 2 = 4 x 2 − y 2
6.
(3x
7.
2
( x + y ) = ( x + y )( x + y ) = x 2 + xy + yx + y 2 = x 2 + 2xy + y 2
8.
2
(2x + 3y ) = 4 x 2 + 12xy + 9y 2
9.
(3x
2
2
2
− 4 x + 2)(2x 3 + 3) = 6x 5 + 9x 2 − 8x 4 −12x + 4 x 3 + 6 = 6x 5 − 8x 4 + 4 x 3 + 9x 2 −12x + 6
+ 2y 3 )( 3x 2 − 2y 3 ) = 9x 4 − 6x 2 y 3 + 6x 2 y 3 − 4 y 6 = 9x 4 − 4 y 6
+ 4 y)
2
= 9x
4
+ 24 x 2 y + 16y 2
€
10.
2
( x − y ) = ( x − y )( x − y ) = x 2 − xy − yx + y 2 = x 2 − 2xy + y 2
11.
2
(2x − 3y ) = 4 x 2 −12xy + 9y 2
12.
(3x
13.
€
x 2 + 2xy + y 2
x+y
= ( x + y) = x + y
€
x 2 − 2xy + y 2
14.
x−y
= ( x − y) = x − y
€
€
2
− 4 y)
2
= 9x
4
− 24 x 2 y + 16y 2
€
€
2
x+y
2
x−y
Related documents