Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 6 PRACTICE test Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use a finite approximation to estimate the area of the region enclosed between the graph of f and the x-axis for a ≤ x ≤ b. 1) f(x) = x2, a = 3, b = 7 1) Use LRAM with four rectangles of equal width. A) 117 B) 105 C) 126 D) 86 2) f(x) = 1 , a = 1, b = 5 x 2) Use MRAM with two rectangles of equal width. A) 3 B) 5 4 16 C) 5 24 D) 3 2 Use a calculator or computer program to solve the problem. 3) Use RAM to estimate the area of the region enclosed between the graph of f(x) = 8sin x and the x-axis for 0 ≤ x ≤ π A) 16 B) 8π C) 0 D) 8 Estimate the value of the quantity. 4) The table shows the velocity of a remote controlled race car moving along a dirt path for 8 seconds. Estimate the distance traveled by the car using 8 subintervals of length 1 with left-end point values. Time Velocity (sec) (in./sec) 0 0 1 10 2 18 3 14 4 24 5 27 6 29 7 12 8 5 A) 134 in. B) 139 in. C) 124 in. 1 D) 268 in. 3) 4) Express the limit as a definite integral. n 2 5) lim n→∞ ∑ (3 c k - 11ck + 19) △xk , [-5, 4] k=1 n A) (6x - 11) dx 1 4 C) (3x - 11) dx -5 ∫ B) ∫ D) 6) lim n→∞ A) n 4 ∑ k = 1 11 - 9 c 2 k ∫ 5 ∫ 5 3 C) 5) 3 11 - 9x2 Evaluate the integral. 11 7) (-50) dx 9 A) -541 -5 ∫ 4 (3x2 - 11x + 19) dx 4 (3x2 - 11x + 19) dx -5 △xk , [3, 5] 6) 4 dx 11 - 9x 4 ∫ B) ∫ 3 ∫ n 11 - 9x2 5 dx D) 4 1 dx 4 dx 11 - 9x ∫ 8) ∫ 3.9 7) B) 550 C) -100 D) -550 0.6 ds -5.7 A) -5.76 8) B) 5.76 C) 1.08 Graph the integrand and use areas to evaluate the integral. 4 9) 16 - x2 dx -4 A) 16π B) 16 D) -1.08 ∫ 10) ∫ 10 9) C) 8π D) 4π x dx 10) -3 A) 109 2 C) 91 2 B) 13 2 D) 109 Use areas to evaluate the integral. b 11) 7x dx , 0<a<b a A) 7 (b 2 - a2) 2 ∫ 12) ∫ 7a x dx , 11) B) 7 (b - a) 2 C) 7(b - a) D) 7(b 2 - a2) a>0 12) a A) ( 7 - 1)a B) 7a2 C) 3a2 D) 6a2 Use NINT on a calculator to find the numerical integral of the function over the specified interval. 13) y = 6tan x ; from x = 0 to x = π 6 A) 1.86304469 B) -0.8630447 C) -1.1369553 13) D) 0.86304469 Find the points of discontinuity of the integrand on the interval of integration, and use area to evaluate the integral. 2 x 14) dx 14) x -7 A) 0, -14 B) 0, 9 C) 0, -5 D) 0, - 1 5 ∫ Solve the problem. 15) Suppose that ∫ 5 f(x) dx = -4. Find 3 5 f(x) dx and 5 A) 5; -4 16) Suppose that ∫ -4 -7 f(x) dx . -4 g(x) -7 dx and - g(t) dt . 9 -7 -4 B) 1; -9 C) -1; -9 g(t) dt = 9. Find A) 1; 9 3 5 C) -4; 4 B) 0; 4 ∫ ∫ ∫ 15) D) 0; -4 ∫ 16) D) 0; 9 USE NINT to find the average value of the function on the interval. At what point in the interval does the function assume its average value? 17) y = -6x2 - 1, [0, 3.46410162] 17) A) -73, at x = 3.46410162 C) 73, at x = 3.46410162 B) 25, at x = 2 D) -25, at x = 2 3 Find the average value of the function without integrating, by appealing to the geometry region between the graph and the x-axis. -6 ≤ x ≤ -1 18) f(x) = x + 6, 18) -x + 4, -1 < x ≤ 4 y 10 8 6 4 2 -10 -8 -6 -4 A) 3 -2 2 4 6 8 10 x B) 5 2 C) 5 D) 2 Interpret the integrand as the rate of change of a quantity and evaluate the integral using the antiderivative of the quantity. π 19) 9 sin x dx 19) 0 A) 9 B) 18 C) 162 D) 2 ∫ 20) ∫ 5 ex dx 20) -7 A) e12 C) e5 - 1 e7 B) e5 + e7 D) e5 - e7 Find the average value over the given interval. 21) y = 4x4 ; [-3, 3] A) 162 5 22) y = 6x + 6; [3, 7] A) 36 21) B) 1944 5 C) 324 5 D) 0 22) B) 66 C) 144 D) 6 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 23) Use the max-min inequality to show that if f is integrable and f(x) ≤ 0 on [a, b], then b f(x) dx ≤ 0. a ∫ 4 23) 24) Show that the average value of a linear function L(x) on [a, b] is L(a) + L(b) . 2 24) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find dy/dx. 25) ∫ x 16t9 dt 25) 1 A) 8 x6 - 8 5 5 B) 16x9/2 Construct a function of the form y = ∫ x D) 32 x6 3 C) 8x4 f(t) dt + C that satisfies the given conditions. a 26) dy = cot x, and y = 8 when x = -3 dx A) y = ∫ x 26) cot t dt + -3 B) y = 8 C) y = - ∫ x csc 2 t dt + 8 D) y = -3 Evaluate the integral. -1 27) 2x dx 2 -7 A) 2 ln 2 ∫ -3 x x ∫ cot t dt + 8 cot t dt + 8 -3 ∫ 27) B) 5 2 ln 2 C) -3 2 ln 2 D) -9 2 ln 2 Find the total area of the region between the curve and the x-axis. 28) y = x2 - 6x + 9; 2 ≤ x ≤ 4 A) 1 3 B) 2 3 C) 5 4 3 28) D) 7 3 Find the area of the shaded region. 29) 29) y = x3 - 4x y 16 (3, 15) 12 8 4 (0, 0) A) 1 2 41 4 3 4 B) x 17 4 C) Use NINT to solve the problem. 10 1 30) Evaluate dx. 4 + 3 cos x 0 A) ≈ 0.022 B) ≈ 0.026 9 4 D) 33 4 ∫ 30) C) ≈ 3.107 D) ≈ 4.064 Solve the problem. 31) Suppose that ∫ x f(t) dt = 4x2 + 8x - 2. Find f(x). 31) 1 4 4 A) x3 + x2 - 2x - 10 3 3 B) 8x + 8 D) 4 x3 + 4x2 - 2x 3 C) 4x2 + 8x - 2 6 32) Suppose that f is the differentiable function shown in the graph and that the position at time t (in t seconds) of a particle moving along a coordinate axis is s = f(x) dx feet. 0 y = f(x) 32) ∫ y 10 8 6 4 2 -10 -8 -6 -4 -2 -2 -4 -6 -8 -10 (8, 8) (1, 2.4) (2, 2) 2 4 6 8 10 x (4, -2.4) (6, -3.6) What is the particle's velocity at time t = 1? A) 2.4 ft/sec B) 0 ft/sec C) -2.4 ft/sec Use the Trapezoidal Rule to estimate the integral. 8 33) x dx , n = 4 0 A) 64 B) 16 D) 0.8 ft/sec ∫ 34) ∫ 0 1 33) C) 40 D) 32 6 dx , n = 4 1 +x A) 743 140 34) B) 1747 840 C) 1171 280 D) 1171 140 Solve the problem. 35) Suppose that the accompanying table shows the velocity of a car every second for 8 seconds. Use the Trapezoidal Rule to approximate the distance traveled by the car in the 8 seconds. Time (sec) Velocity (ft/sec) 0 20 1 21 2 22 3 24 4 23 5 25 6 22 7 20 8 21 A) 355 feet B) 177.5 feet C) 269.5 feet 7 D) 198 feet 35) Answer Key Testname: CHAPTER 6 PRACTICE 1) D 2) D 3) A 4) A 5) D 6) C 7) C 8) B 9) C 10) A 11) A 12) C 13) D 14) C 15) B 16) A 17) D 18) B 19) B 20) C 21) C 22) A 23) If f(x) ≤ 0 on [a, b], then max f ≤ 0. So ∫ b f(x) dx ≤ max f ∙ (b - a) ≤ 0. a 24) Let L(x) = cx + d. Then the average value of L(x) on [a, b] is b av(L) = 1 (cx +d)dx b-a a ∫ = 1 b-a cb 2 + db - cb 2 + db 2 2 = 1 b-a c(b 2 - a2) + db + d(b - a) 2 = c(b + a) + 2d 2 = (ca + d) + (cb + d) 2 = L(a) + L(b) 2 25) C 26) D 27) D 28) B 29) A 30) D 31) B 8 Answer Key Testname: CHAPTER 6 PRACTICE 32) A 33) D 34) C 35) B 9