Download Solve recursions by the generating function method

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
UDE, Fakultät für Mathematik: Discrete Mathematics (C1) [Recursions]
1
Solve recursions by the generating function method
Define generating function for a sequence, defined by a recursion
Determine the sequence (an ) defined by
an+2 = 8 · 3n+1 + 9an − 8an+1 ,
Define the generating function:
A(x) :=
n ∈ N0
∞
X
a0 := 2, a1 := −6
ak x k
k=0
Separate the terms involving initial conditions
A(x) = 2 − 6x +
∞
X
ak+2 xk+2
k=0
Substitute the recursion equation
A(x) = 2 − 6x +
∞
X
8 · 3k+1 + 9ak − 8ak+1 xk+2
k=0
Rewrite using the generating function
A(x) = 2 − 6x +
∞
X
8 · 3k+1 xk+2 +
k=0
= 2 − 6x + 8x
∞
X
k=0
∞
X
9ak xk+2 −
3
x
+ 9x
2
8ak+1 xk+2
k=0
k=0
k+1 k+1
∞
X
∞
X
k
ak x − 8x
k=0
∞
X
ak+1 xk+1
k=0
1
= 2 − 6x + 8x(
− 1) + 9x2 A(x) − 8x(A(x) − 2)
1 − 3x
Solve for generating function
1
2 − 6x + 8x( 1−3x
− 1) + 16x
1 + 8x − 9x2
(2 + 10x)(1 − 3x) + 24x2
=
(1 + 8x − 9x2 )(1 − 3x)
−6x2 + 4x + 2
=
(1 + 8x − 9x2 )(1 − 3x)
A(x) =
UDE, Fakultät für Mathematik: Discrete Mathematics (C1) [Recursions]
2
(1 − x)(6x + 2)
(1 − x)(9x + 1)(1 − 3x)
6x + 2
=
(9x + 1)(1 − 3x)
=
Note: To obtain the factorization above it may be helpful to rewrite the poylnomial, e.g.:
8
1
1 + 8x − 9x2 = (−9)(x2 − x − )
9
9
Then determine the zeros:
4
y= ±
9
r
16 1
4 5
+ = ±
81 9
9 9
Hence:
1
1 + 8x − 9x2 = (−9)(x − 1)(x + ) = (1 − x)(1 + 9x)
9
Expand into a power series
For this step one may use partial fraction decomposition, Taylor-series-expansion or operations
with known power series. Here we use partial fraction decomposition:
A(x) =
a
b
+
⇔ 6x + 2 = a(1 + 9x) + b(1 − 3x) = (9a − 3b)x + (a + b)
1 − 3x 1 + 9x
The coefficients may be determined by solving the system
9a − 3b = 6,
a+b=2
⇐⇒
a = 1, b = 1
Alternatively one may insert suitable values for x, e.g. x = −1/9 and x = 1/3. Now A(x) can be
expanded with the help of the geometric series:
∞
X
1
1
3k + (−9)k xk
A(x) =
+
=
1 − 3x 1 + 9x k=0
Read off the sequence (and check if desired)
So the solution is:
an = 3n + (−9)n
The initial conditions a0 = 2 and a1 = −6 are satisfied. So is the recursion equation:
an+2 − 9an + 8an+1 = 3n+2 + (−9)n+2 − 9 (3n + (−9)n ) + 8 3n+1 + (−9)n+1
= 3n (9 − 9 + 24) + (−9)n (81 − 9 − 72) = 8 · 3n+1
D01
Related documents