Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name __________________________________ Date _________________________ Additional Exercises 7.1 Form I Radical Expressions and Functions Find the indicated root or state that the expression is not a real number. 1. 49 1. _______________ 2. − 64 2. _______________ 3. 3 − 27 3. _______________ 4. 3 64 4. _______________ 5. 4 16 5. _______________ 6. 4 − 16 6. _______________ 7. 6 64 7. _______________ 8. 5 − 243 8. _______________ Simplify each expression. Include absolute value bars where necessary. 9. (−3) 2 9. _______________ 10. ( x + 4) 2 10. _______________ AE-255 Name __________________________________ Date _________________________ 11. 3 ( a + 7) 3 11. _______________ 12. 5 m5 12. _______________ 4x 2 13. _______________ 13. 14. 4 ( x + 6) 4 14. _______________ 15. 3 − 27x 3 15. _______________ 16. − 3 − 64 16. _______________ Find the indicated function values for each function. If necessary round to two decimal places. If the function value is not a real number and does not exist, so state. 17. f ( x) = x − 8 ; f (44) 17. _______________ 18. g ( x) = x − 25 ; g (25) 18. _______________ 19. h( x) = 3 5 x − 12 ; h (4) 19. _______________ 20. p ( x) = 3 2 x − 19 ; p (–4) 20. _______________ AE-256 Name __________________________________ Date _________________________ Additional Exercises 7.2 Form I Rational Exponents Use radical notation to rewrite each expression. Simplify if possible. 1 1. 64 2 1. _______________ 2. 27 3 3. (5 xy ) 2 4. 32 5 1 2. _______________ 1 3. _______________ 2 4. _______________ Rewrite the expression with a rational exponent. 5. 10 5. _______________ 6. 5 4x 6. _______________ 7. 3 82 7. _______________ 8. ( 16 ) 5 4 8. _______________ Rewrite the expression with a positive rational exponent. Simplify, if possible. 9. 10. 49 16 − − 1 2 9. _______________ 3 4 10. _______________ AE-261 Name __________________________________ 11. 12. (−27) 100 − − 2 3 Date _________________________ 11. _______________ 3 2 12. _______________ Use the properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. 13. 14. 1 8 x x a a 7 8 13. _______________ 4 5 14. _______________ 1 5 1 15. (100 x 8 y 4 ) 2 16. & −43 −32 # $x y ! $ ! % " 15. _______________ −12 16. _______________ Use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. 17. 10 x5 17. _______________ 18. 20 (3 y ) 4 18. _______________ 19. 3 x ⋅9 x 19. _______________ 20. 10 3 20. _______________ 10 AE-262 Name __________________________________ Date _________________________ Additional Exercises 7.3 Form I Multiplying and Simplifying Radical Expressions Use the product rule to multiply. 1. 2. 3 3. 4. 3 6⋅ 5 1. _______________ 4 ⋅3 3 2. _______________ ( x + 4) ⋅ ( x − 4) 3. _______________ 3x ⋅ 3 2 x 4. _______________ Simplify. Assume that any variable in the radicand represents a positive real number. 5. 90 5. _______________ 6. 108 6. _______________ 7. 45 x 7. _______________ 8. 3 2 xy 2 ⋅ 3 2 xy 2 ⋅ 3 20 xy 2 8. _______________ 9. 3 24 x12 9. _______________ 10. 3 48 x 6 y 7 10. _______________ AE-267 Name __________________________________ Date _________________________ 11. 4 x 4 y 8 z 10 11. _______________ 12. 5 ( a + b) 7 12. _______________ Express the function in simplified form. Assume that x can be any real number. 13. f ( x) = ( x − 1) 4 13. _______________ 14. f ( x) = 100( x + 3) 8 14. _______________ 15. f ( x) = x 2 + 4 x + 4 15. _______________ Multiply and simplify. Assume that all variables in a radicand represent positive real numbers. 16. 5 ⋅ 12 16. _______________ 17. 18 ⋅ 6 17. _______________ 18. 7 x ⋅ 12 y 2 18. _______________ 19. 3 12 x 2 ⋅ 3 4 xy 5 19. _______________ 20. 4 5 x 5 y 5 ⋅ 4 32 xy 3 20. _______________ AE-268 Name __________________________________ Date _________________________ Additional Exercises 7.4 Form I Adding, Subtracting and Dividing Radical Expressions Add or subtract as indicated. Assume all variables represent positive real numbers. 1. 5 5 +3 5 1. _______________ 2. 6 7 − 7 +2 7 2. _______________ 3. 4 3 6 − 23 6 3. _______________ 4. 2 5 + 43 5 − 6 5 4. _______________ 5. 3 5 + 4 125 5. _______________ 6. 3 8 y − 3 27 y 6. _______________ 7. 5 8 x 3 y + 2 x 32 xy 7. _______________ 8. 4 12 − 2 48 8. _______________ Use the quotient rule to simplify. Assume all variables represent positive real numbers. 9. 25 4 9. _______________ 10. 13 25 10. _______________ AE-273 Name __________________________________ Date _________________________ 3 8 11. _______________ 12. 14 x2 12. _______________ 13. 50 49 13. _______________ 14. 12 81 14. _______________ 16 y6 15. _______________ 11. 15. 3 3 Divide and simplify. Assume that all variables represent positive real numbers. 16. 17. 18. 19. 20. 100 16. _______________ 4 121 17. _______________ 11 80 18. _______________ 5 32 x 7 19. _______________ 4x 150 x 11 20. _______________ 3x 5 AE-274 Name __________________________________ Date _________________________ Additional Exercises 7.5 Form I Multiplying with More Than One Term and Rationalizing Denominators Multiply as indicated and then simplify if possible. Assume that all variables represent positive real numbers. 1. 3( 7 + 5 ) 1. _______________ 2. 5( 6 − 5) 2. _______________ 4 (3 3 + 3 2 3. _______________ 3. 3 4. 3 3( 7 − 2 2 ) 4. _______________ ( 11 + 5)( 11 − 5) 5. 5. ______________ 6. ( 5 + 2) 2 6. _______________ 7. ( 15 + 6 )( 15 − 6 ) 7. _______________ Rationalize each denominator. Simplify if possible. Assume that all variables represent positive real numbers. 1 8. 9. 10. 8. _______________ 5 3 6 x 9. _______________ 2 3 10. _______________ AE-279 Name __________________________________ Date _________________________ 11. 3 5x 16 x 2 11. _______________ 12. 3 1 4x 12. _______________ 13. 14. 15. 16. 3 13. _______________ 5− 7 5 14. _______________ 8− 3 4 15. _______________ 3− 2 2 5 16. ______________ 5+2 Rationalize each numerator. Assume that all variables represent positive real numbers. 17. 18. 19. 20. 7 17. _______________ 5 5 2 18. _______________ 3 2 19. _______________ 3 11 7a 20. _______________ AE-280 Name __________________________________ Date _________________________ Additional Exercises 7.6 Form I Radical Equations Solve each radical equation. 1. x =5 1. _______________ 2. x+3 =6 2. _______________ 3. y +1 = 9 3. _______________ 4. x −1 −1 = 7 4. _______________ 5. y−4 =5 5. _______________ 6. 5x − 4 = 4 6. _______________ 7. 2 x + 1 = 19 7. _______________ 8. 6 x + 1 − 11 = 0 8. _______________ 9. 8 x + 3 = −6 9. _______________ 10. x +4=9 10. _______________ AE-285 Name __________________________________ 3x + 1 − 3 = 1 11. 12. Date _________________________ 11. _______________ 1 2 (4 x + 8) = 4 12. _______________ 1 2 13. (a − 3) + 6 = 7 14. 3 3x + 4 = 7 14. _______________ 15. 3 5x + 2 = 3 15. _______________ 16. 4 4x + 1 = 3 16. _______________ 17. a−3 = a−3 17. _______________ 18. (5 x + 1) 2 = x + 1 18. _______________ 19. x + 7 = 2 x + 13 19. _______________ 13. _______________ 1 20. x+5 = x−3 +2 20. _______________ AE-286 Name __________________________________ Date _________________________ Additional Exercises 7.7 Form I Complex Numbers Express each number in terms of i and simplify if possible. 1. − 25 1. _______________ 2. − 121 2. _______________ 3. − 32 3. _______________ 4. − 50 4. _______________ 5. 7 + − 18 5. _______________ Perform the indicated operations. Write the results in the form a + bi . 6. (8 + 2i ) + (2 + 8i ) 6. _______________ 7. 6i − (8 − 3i ) 7. _______________ 8. (10 − 3i ) − (4 − 6i ) 8. _______________ 9. 5(2 − 3i ) 9. _______________ 10. 3i (4 − 8i ) 10. _______________ AE-291 Name __________________________________ Date _________________________ 11. (2 − 9i )(8 + 4i ) 11. _______________ 12. (4 − 5i ) 2 12. _______________ Divide and simplify to the form a + bi . 13. 5 + 8i 4 − 2i 13. _______________ 14. 3 + 2i 2 − 5i 14. _______________ 15. 3 − 4i i 15. _______________ 16. 6 − 5i 3i 16. _______________ Simplify each expression. 17. i6 17. _______________ 18. i 20 18. _______________ 19. i 27 19. _______________ 20. (−i ) 5 20. _______________ AE-292