Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Diploma Programme Mathematics HL and further mathematics HL formula booklet For use during the course and in the examinations First examinations 2014 Published June 2012 © International Baccalaureate Organization 2012 5048 Contents Prior learning 2 Core 3 Topic 1: Algebra 3 Topic 2: Functions and equations 4 Topic 3: Circular functions and trigonometry 4 Topic 4: Vectors 5 Topic 5: Statistics and probability 6 Topic 6: Calculus 8 Options 10 Topic 7: Statistics and probability 10 Further mathematics HL topic 3 Topic 8: Sets, relations and groups 11 Further mathematics HL topic 4 Topic 9: Calculus 11 Further mathematics HL topic 5 Topic 10: Discrete mathematics 12 Further mathematics HL topic 6 Formulae for distributions 13 Topics 5.6, 5.7, 7.1, further mathematics HL topic 3.1 Discrete distributions 13 Continuous distributions 13 Further mathematics 14 Topic 1: Linear algebra 14 Formulae Prior learning Area of a parallelogram Area of a triangle Area of a trapezium A b h , where b is the base, h is the height A 1 (b h) , where b is the base, h is the height 2 A 1 (a b) h , where a and b are the parallel sides, h is the height 2 Area of a circle A r 2 , where r is the radius Circumference of a circle C 2 r , where r is the radius V 1 (area of base 3 Volume of a cuboid V l w h , where l is the length, w is the width, h is the height Volume of a cylinder V Area of the curved surface of a cylinder A 2 rh , where r is the radius, h is the height Volume of a pyramid Volume of a sphere Volume of a cone Distance between two points ( x1, y1 ) and ( x2 , y2 ) Coordinates of the midpoint of a line segment with endpoints ( x1, y1 ) and ( x2 , y2 ) Solutions of a quadratic equation vertical height) r 2h , where r is the radius, h is the height V 4 3 r , where r is the radius 3 V 1 2 r h , where r is the radius, h is the height 3 ( x1 x2 )2 ( y1 d x1 x2 2 , y1 y2 )2 y2 2 The solutions of ax2 bx c 0 are x b b2 4ac 2a Core Topic 1: Algebra 1.1 1.2 The nth term of an arithmetic sequence un u1 (n 1)d The sum of n terms of an arithmetic sequence Sn n (2u1 (n 1)d ) 2 The nth term of a geometric sequence un u1r n The sum of n terms of a finite geometric sequence Sn u1 (r n 1) r 1 The sum of an infinite geometric sequence S Exponents and logarithms ax b ax ex ln a 1 u1 1 r u1 (1 r n ) , r 1 1 r , r x log a a x 1 log a b , where a 0, b 0, a 1 a loga x x log c a log c b log b a 1.3 Combinations n r n! r !(n r )! Permutations nP r n! (n r )! Binomial theorem (a b)n 1.5 Complex numbers z 1.7 De Moivre’s theorem r (cos n (u1 un ) 2 a ib an n n1 a b 1 r (cos isin ) isin ) n r n (cos n n nr r a b r rei bn r cis isin n ) r nein r n cis n Topic 2: Functions and equations 2.5 Axis of symmetry of the graph of a quadratic function 2.6 Discriminant f ( x) ax2 bx c axis of symmetry x b 2a b2 4ac Topic 3: Circular functions and trigonometry 3.1 3.2 Length of an arc l Area of a sector 1 2 r , where 2 radius Identities Pythagorean identities 3.3 r , where is the angle measured in radians, r is the radius A tan sin cos sec 1 cos cosec 1 sin cos 2 sin 2 is the angle measured in radians, r is the 1 1 tan 2 2 sec 1 cot 2 csc 2 Compound angle identities sin( A B) sin Acos B cos Asin B cos( A B) cos Acos B sin Asin B tan( A B ) Double angle identities tan A tan B 1 tan A tan B sin 2 2sin cos cos2 cos2 tan 2 2tan 1 tan 2 sin2 2cos2 1 1 2sin2 3.7 Cosine rule Sine rule Area of a triangle c2 a2 b2 2ab cos C ; cos C a sin A b sin B a2 b2 c2 2ab c sin C A 1 ab sin C 2 v 2 1 v v2 d ( x1 x2 )2 Topic 4: Vectors 4.1 Magnitude of a vector Distance between two points ( x1, y1, z1 ) and ( x2 , y2 , z2 ) Coordinates of the midpoint of a line segment with endpoints ( x1, y1, z1 ) , ( x2 , y2 , z2 ) 4.2 Scalar product x1 x2 2 v w 2 y1 , 2 2 v3 , where v y2 )2 ( y1 y2 z1 , v1 v2 v3 ( z1 z2 )2 z2 2 v w cos , where is the angle between v and w v1 v2 , w v3 v w v1w1 v2 w2 v3w3 , where v 4.3 Angle between two vectors cos Vector equation of a line r = a + λb Parametric form of the equation of a line x x0 l, y Cartesian equations of a line x x0 l y v1w1 v2 w2 v3 w3 v w y0 m y0 m, z z0 z z0 n n w1 w2 w3 4.5 Vector product Area of a triangle 4.6 v w v2 w3 v3 w2 v3 w1 v1w3 v1w2 v2 w1 v w v w sin , where A where v v1 v2 , w v3 is the angle between v and w 1 v w where v and w form two sides of a triangle 2 Vector equation of a plane r = a + λb+ c Equation of a plane (using the normal vector) r n Cartesian equation of a plane ax by cz d a n Topic 5: Statistics and probability 5.1 Population parameters k Let n fi i 1 k Mean f i xi i 1 n Variance k 2 f i xi 2 2 i 1 k f i xi 2 Standard deviation 2 i 1 n k fi xi n 2 i 1 n 5.2 5.3 Probability of an event A w1 w2 w3 P( A) n( A) n(U ) Complementary events P( A) P( A ) 1 Combined events P( A B) P( A) P(B) P( A Mutually exclusive events P( A B) P( A) P(B) B) 5.4 Conditional probability Independent events P A B P( A P( A B) P( B) B) P( A) P(B) Bayes’ theorem P B| A P( Bi | A) 5.5 P( B)P A | B P( B1 ) P( A | B1 ) P( B2 ) P( A | B2 ) P( B3 ) P( A | B3 ) x P( X E( X ) x) x f ( x)dx Variance Var( X ) E( X )2 Variance of a discrete random variable X Var( X ) (x )2 P( X Variance of a continuous random variable X Var( X ) (x ) 2 f ( x)dx E( X 2 ) Binomial distribution X ~ B(n, p) P( X Mean E( X ) np Variance Var( X ) np(1 p) Poisson distribution X ~ Po( m) Mean Variance E( X ) m Var( X ) m 5.7 P( B )P A | B P( Bi ) P( A Bi ) Expected value of a E( X ) discrete random variable X Expected value of a continuous random variable X 5.6 P( B)P A | B Standardized normal variable z x P( X x) x) x) E(X ) 2 x 2 P( X x 2 f ( x)dx 2 x) 2 n x p (1 p)n x , x 0,1, x mxe m , x 0,1, 2, x! ,n Topic 6: Calculus 6.1 6.2 Derivative of f ( x) y dy dx f ( x) xn h nx n 0 f ( x) Derivative of sin x f (x) sin x f (x) cos x Derivative of cos x f (x) cos x f (x) Derivative of tan x f ( x) f ( x) sec 2 x Derivative of ex f ( x) e x f ( x) tan x sin x f ( x) e x f ( x) ln x 1 x f ( x) Derivative of sec x f (x) sec x f (x) sec x tan x Derivative of csc x f (x) csc x f (x) csc x cot x Derivative of cot x f ( x) cot x f ( x) csc 2 x Derivative of a x f ( x) Derivative of loga x Derivative of arcsin x Derivative of arccos x Derivative of arctan x Chain rule Product rule ax f ( x) f ( x) loga x a x (ln a ) f ( x) f ( x) arcsin x f ( x) f ( x) arccos x f ( x) f ( x) arctan x f ( x) y g (u) , where u y uv dy dx Quotient rule y u v f ( x) 1 Derivative of xn Derivative of ln x f ( x h) h f ( x) lim dy dx u v 1 x ln a f ( x) dv du v dx dx du dv u dx dx v2 1 1 x2 1 1 x2 1 1 x2 dy dx dy du du dx 6.4 Standard integrals xn 1 C, n n 1 x n dx 1 dx ln x x sin x dx 1 C cos x C cos x dx sin x C ex dx ex 1 x a C ln a a x dx 1 a2 x2 dx 1 a 6.5 Area under a curve Volume of revolution (rotation) 6.7 Integration by parts A 2 x b a b V a u C 2 1 x arctan a a x a dx arcsin b y dx or A a πy 2 dx or V dv dx uv dx v C C, x a x dy b a πx 2 dy du dx or u dv uv dx v du Options Topic 7: Statistics and probability Further mathematics HL topic 3 7.1 (3.1) Probability generating function for a discrete random variable X G (t ) 7.2 (3.2) Linear combinations of two independent random variables X1, X 2 E a1 X 1 7.3 (3.3) Sample statistics E (t X ) x a2 E X 2 2 1 a2 X 2 a2 2 Var X 2 a Var X 1 f i xi i 1 n Variance sn2 k k x )2 fi ( xi sn2 f i xi 2 i 1 x2 i 1 n Standard deviation sn n k fi ( xi x )2 i 1 sn 7.6 (3.6) a1E X 1 k x 7.5 (3.5) a2 X 2 Var a1 X 1 Mean x Unbiased estimate of population variance sn2 1 x )t x P( X n k n 2 sn n 1 sn2 1 Confidence intervals Mean, with known variance x z Mean, with unknown variance x t n sn 1 n Test statistics Mean, with known variance z Mean, with unknown variance t x / n x sn 1 / n k f i ( xi i 1 x )2 fi xi 2 i 1 n 1 n 1 n 2 x n 1 7.7 (3.7) Sample product moment correlation coefficient n xi yi nx y i 1 r n n xi 2 nx 2 i 1 Test statistic for H0: ρ=0 t r yi 2 ny2 (y y) i 1 n 2 1 r2 Equation of regression line of x on y n xi yi nx y i 1 n x x yi 2 ny 2 i 1 Equation of regression line of y on x n y xi yi nx y xi 2 nx 2 i 1 n y (x x ) i 1 Topic 8: Sets, relations and groups Further mathematics HL topic 4 8.1 (4.1) De Morgan’s laws (A B) A B (A B) A B Topic 9: Calculus Further mathematics HL topic 5 9.5 (5.5) Euler’s method Integrating factor for y P(x) y Q(x) yn 1 yn h f (xn , yn ) ; xn (step length) e P ( x )dx 1 xn h , where h is a constant 9.6 (5.6) Maclaurin series Taylor series Taylor approximations (with error term Rn ( x) ) Lagrange form Maclaurin series for special functions f (0) f ( x) f (a) ( x a) f (a) f ( x) f (a ) ( x a ) f (a ) ... ( x a)2 f (a ) ... 2! ( x a)n ( n ) f (a ) Rn ( x ) n! f ( n 1) (c) ( x a) n 1 , where c lies between a and x (n 1)! Rn ( x) ex x f (0) x2 f (0) 2! f ( x) x2 ... 2! 1 x x2 2 x3 3 ln(1 x) x sin x x x3 3! x5 ... 5! cos x 1 x2 2! x4 ... 4! arctan x x x3 3 x5 5 ... ... Topic 10: Discrete mathematics Further mathematics HL topic 6 10.7 (6.7) Euler’s formula for connected planar graphs v e f 2 , where v is the number of vertices, e is the number of edges, f is the number of faces Planar, simple, connected graphs e 3v 6 for v 3 e 2v 4 if the graph has no triangles Formulae for distributions Topics 5.6, 5.7, 7.1, further mathematics HL topic 3.1 Discrete distributions Distribution Geometric Notation Probability mass function pq x X ~ Geo p 1 for x 1,2,... Negative binomial X ~ NB r , p x 1 r x pq r 1 r Mean Variance 1 p q p2 r p rq p2 Mean Variance for x r, r 1,... Continuous distributions Distribution Normal Notation X ~N , Probability density function 2 1 2π e 1 x 2 2 2 Further mathematics Topic 1: Linear algebra 1.2 Determinant of a 2 2 matrix A a b c d det A A a b c d A1 A a b d e g h Inverse of a 2 2 matrix Determinant of a 3 3 matrix c f k A ad bc 1 det A det A a d c b , ad a e f h k b bc d f g k c d e g h