Download Section 7.3, Some Trigonometric Integrals

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 7.3, Some Trigonometric Integrals
Homework: 7.3 #1–31 odds
We will look at five commonly encountered types of trigonometric integrals:
R
R
1. sinn x dx and cosn x dx
R
2. sinm x cosn x dx
R
R
R
3. sin mx cos nx dx, sin mx sin nx dx, and cos mx cos nx dx
R
R
4. tann x dx and cotn x dx
R
R
5. tanm x secn dx and cotm x cscn x dx
We will demonstrate how to calculate these by example. Throughout this section, we will be using
many trigonometric identities, including:
sin2 x + cos2 x = 1
1 + tan2 x = sec2 x
1 + cot2 x = csc2 x
1 − cos 2x
sin2 x =
2
1
+
cos
2x
cos2 x =
2
1
sin mx cos nx =
sin(m + n)x + sin(m − n)x
2
1
sin mx sin nx = − cos(m + n)x − cos(m − n)x
2
1
cos mx cos nx =
cos(m + n)x + cos(m − n)x
2
1
Integrals of the form
R
sinn x dx and
R
cosn x dx
We will look at examples when n is odd and when n is even. When n is odd, we will use sin2 x +
2x
2x
cos2 x = 1. When n is even, we will use either sin2 x = 1−cos
or cos2 x = 1+cos
.
2
2
Examples
R
1. Find cos5 x dx.
We will use the identity cos2 x = 1 − sin2 x, so we will substitute cos4 x = (1 − sin2 x)2 .
Z
Z
cos5 x dx = (1 − sin2 x)2 cos x dx
Z
=
1 − 2 sin2 x + sin4 x cos x dx
Z
=
cos x − 2 sin2 x cos x + sin4 x cos x dx
= sin x −
2
1
sin3 x + sin5 x + C
3
5
R
2. Find sin4 x dx
We will start by using sin2 x =
Z
Z 4
sin x dx =
1−cos 2x
.
2
1 − cos 2x
2
2
dx
Z
=
=
=
=
=
1
1 − 2 cos 2x + cos2 2x dx
4
Z
Z
Z
1
1
1
dx −
cos 2x dx +
cos2 2x dx
4
2
4
Z
x 1
1
1 + cos 4x
− sin 2x +
dx
4 4
4
2
x
1
x 1
− sin 2x + +
sin 4x + C
4 4
8 32
3x 1
1
− sin 2x +
sin 4x + C,
8
4
32
where we also used that cos2 x =
2
Integrals of the form
1+cos 2x
2
R
in the third-to-last line.
sinm x cosn x dx
If either m or n is an odd positive integer, we will use the identity sin2 x + cos2 x = 1. If both m
and n are even and positive, we will use the half-angle identities.
Examples
R
1. Find cos5 x sin−4 x dx
Since the exponent for cosine is odd, we will replace cos4 x by (1−sin2 x)2 = 1−2 sin2 x+sin4 x:
Z
Z
−4
5
cos x sin x dx = cos x(1 − 2 sin2 x + sin4 x) sin−4 x dx
Z
Z
Z
= cos x sin−4 x dx − 2 cos x sin−2 x dx + cos x dx
1
= − (sin x)−3 + 2(sin x)−1 + sin x + C
3
(Be careful with notation, since sin−1 x refers to the inverse sine function, not 1/(sin x).)
R
2. Find cos2 x sin4 x dx.
2
4
1+cos 2x
1−cos 2x
2
We will substitute cos x =
and sin x =
. Then,
2
2
Z
cos2 x sin4 x dx =
=
=
=
=
=
=
2
1 + cos 2x 1 − cos 2x
dx
2
2
Z
1
(1 + cos 2x)(1 − 2 cos 2x + cos2 2x) dx
8
Z
1
(1 − cos 2x − cos2 2x + cos3 2x) dx
8
Z
Z
Z
Z
1
1
1
1
2
dx −
cos 2x dx −
cos 2x dx +
cos3 2x dx
8
8
8
8
Z
Z
x
1
1
1 + cos 4x
1
−
sin 2x −
dx +
cos 2x(1 − sin2 2x) dx
8 16
8
2
8
x
1
x
1
1
1
−
sin 2x −
−
sin 4x +
sin 2x −
sin3 2x + C
8 16
16 64
16
48
x
1
1
−
sin 4x −
sin3 2x + C
16 64
48
Z
3
RIntegrals of the form
cos mx cos nx dx
R
sin mx cos nx dx,
R
sin mx sin nx dx, and
1
Here,
we
will
use
the
identities
sin
mx
cos
nx
=
sin(m
+
n)x
+
sin(m
−
n)x
, sin mx sin nx =
2
1
1
− 2 cos(m + n)x − cos(m − n)x , and cos mx cos nx = 2 cos(m + n)x + cos(m − n)x .
Examples
R
1. Find sin 4x cos 5x dx Since sin mx cos nx = 21 sin(m + n)x + sin(m − n)x , we will use this with m = 4 and n = 5:
Z
Z
1
sin 9x + sin(−x) dx
sin 4x cos 5x dx =
2
1
1
= − cos 9x + cos x + C,
18
2
where we used that cos(−x) = cos x.
Rπ
2. Find −π sin mx sin nx dx, where m and n are positive integers.
First, consider m 6= n. Then,
Z π
Z
1 π sin mx sin nx dx = −
cos(m + n)x − cos(m − n)x dx
2
−π
−π
π
1
1
1
sin(m + n)x −
sin(m − n) =−
2 m+n
m−n
−π
=0
If m = n, then
Z π
Z
1 π sin mx sin nx dx = −
cos(2m)x − 1 dx
2 −π
−π
π
1 1
=−
sin(2m)x − x 2 2m
−π
=π
4
Integrals of the form
R
tann x dx and
R
cotn x dx
In the tangent case, we will use tan2 x = sec2 x − 1. In the cotangent case, we will use cot2 x =
csc2 x − 1. Here, we will only replace tan2 x or cot2 x, distribute, integrate what we can, then repeat
as necessary.
Examples
1. Find
R
Z
tan4 x dx
tan4 x dx =
Z
tan2 x(sec2 x − 1) dx
Z
Z
2
2
= tan x sec x dx − tan2 x dx
Z
1
= tan3 x − (sec2 x − 1) dx
3
1
= tan3 x − tan x + x + C
3
2. Find
R
Z
5
cot5 x dx
cot5 x dx =
Z
cot3 x(csc2 x − 1) dx
Z
Z
3
2
= cot x csc x − cot3 x dx
Z
1
= − cot4 x − cot x(csc2 x − 1) dx
4
Z
Z
1
cos x
= − cot4 x − cot x csc2 x dx +
dx
4
sin x
1
1
= − cot4 x + cot2 x + ln | sin x| + C
4
2
Integrals of the form
R
tanm x secn dx and
R
cotm x cscn x dx
If n is even, use either sec2 x = tan2 x + 1 or csc2 x = cot2 x + 1 to replace all but 2 powers of sec x
or csc x, then you can use a u-substitution to integrate.
If m is odd, we will use that the derivative of sec x is sec x tan x (or the derivative of csc x is
− csc x cot x), and replace m − 1 powers of either tangent or cotangent using a Pythagorean identity.
Examples
1. Find
R
Z
tan1/2 x sec4 x dx
tan1/2 x sec4 x dx =
tan1/2 x(tan2 +1) sec2 x dx
Z
Z
= tan5/2 x sec2 x dx + tan1/2 x sec2 x dx
=
2. Find
R
Z
Z
2
2
tan7/2 x + tan3/2 x + C
7
3
cot3 x csc3/2 x dx
cot3 x csc3/2 x dx =
Z
cot x(csc2 x − 1) csc3/2 x dx
Z
Z
= cot x csc x csc5/2 x dx − cot x csc x csc1/2 x dx
2
2
= − csc7/2 x + csc3/2 +C
7
3
Related documents