Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 7.3, Some Trigonometric Integrals Homework: 7.3 #1–31 odds We will look at five commonly encountered types of trigonometric integrals: R R 1. sinn x dx and cosn x dx R 2. sinm x cosn x dx R R R 3. sin mx cos nx dx, sin mx sin nx dx, and cos mx cos nx dx R R 4. tann x dx and cotn x dx R R 5. tanm x secn dx and cotm x cscn x dx We will demonstrate how to calculate these by example. Throughout this section, we will be using many trigonometric identities, including: sin2 x + cos2 x = 1 1 + tan2 x = sec2 x 1 + cot2 x = csc2 x 1 − cos 2x sin2 x = 2 1 + cos 2x cos2 x = 2 1 sin mx cos nx = sin(m + n)x + sin(m − n)x 2 1 sin mx sin nx = − cos(m + n)x − cos(m − n)x 2 1 cos mx cos nx = cos(m + n)x + cos(m − n)x 2 1 Integrals of the form R sinn x dx and R cosn x dx We will look at examples when n is odd and when n is even. When n is odd, we will use sin2 x + 2x 2x cos2 x = 1. When n is even, we will use either sin2 x = 1−cos or cos2 x = 1+cos . 2 2 Examples R 1. Find cos5 x dx. We will use the identity cos2 x = 1 − sin2 x, so we will substitute cos4 x = (1 − sin2 x)2 . Z Z cos5 x dx = (1 − sin2 x)2 cos x dx Z = 1 − 2 sin2 x + sin4 x cos x dx Z = cos x − 2 sin2 x cos x + sin4 x cos x dx = sin x − 2 1 sin3 x + sin5 x + C 3 5 R 2. Find sin4 x dx We will start by using sin2 x = Z Z 4 sin x dx = 1−cos 2x . 2 1 − cos 2x 2 2 dx Z = = = = = 1 1 − 2 cos 2x + cos2 2x dx 4 Z Z Z 1 1 1 dx − cos 2x dx + cos2 2x dx 4 2 4 Z x 1 1 1 + cos 4x − sin 2x + dx 4 4 4 2 x 1 x 1 − sin 2x + + sin 4x + C 4 4 8 32 3x 1 1 − sin 2x + sin 4x + C, 8 4 32 where we also used that cos2 x = 2 Integrals of the form 1+cos 2x 2 R in the third-to-last line. sinm x cosn x dx If either m or n is an odd positive integer, we will use the identity sin2 x + cos2 x = 1. If both m and n are even and positive, we will use the half-angle identities. Examples R 1. Find cos5 x sin−4 x dx Since the exponent for cosine is odd, we will replace cos4 x by (1−sin2 x)2 = 1−2 sin2 x+sin4 x: Z Z −4 5 cos x sin x dx = cos x(1 − 2 sin2 x + sin4 x) sin−4 x dx Z Z Z = cos x sin−4 x dx − 2 cos x sin−2 x dx + cos x dx 1 = − (sin x)−3 + 2(sin x)−1 + sin x + C 3 (Be careful with notation, since sin−1 x refers to the inverse sine function, not 1/(sin x).) R 2. Find cos2 x sin4 x dx. 2 4 1+cos 2x 1−cos 2x 2 We will substitute cos x = and sin x = . Then, 2 2 Z cos2 x sin4 x dx = = = = = = = 2 1 + cos 2x 1 − cos 2x dx 2 2 Z 1 (1 + cos 2x)(1 − 2 cos 2x + cos2 2x) dx 8 Z 1 (1 − cos 2x − cos2 2x + cos3 2x) dx 8 Z Z Z Z 1 1 1 1 2 dx − cos 2x dx − cos 2x dx + cos3 2x dx 8 8 8 8 Z Z x 1 1 1 + cos 4x 1 − sin 2x − dx + cos 2x(1 − sin2 2x) dx 8 16 8 2 8 x 1 x 1 1 1 − sin 2x − − sin 4x + sin 2x − sin3 2x + C 8 16 16 64 16 48 x 1 1 − sin 4x − sin3 2x + C 16 64 48 Z 3 RIntegrals of the form cos mx cos nx dx R sin mx cos nx dx, R sin mx sin nx dx, and 1 Here, we will use the identities sin mx cos nx = sin(m + n)x + sin(m − n)x , sin mx sin nx = 2 1 1 − 2 cos(m + n)x − cos(m − n)x , and cos mx cos nx = 2 cos(m + n)x + cos(m − n)x . Examples R 1. Find sin 4x cos 5x dx Since sin mx cos nx = 21 sin(m + n)x + sin(m − n)x , we will use this with m = 4 and n = 5: Z Z 1 sin 9x + sin(−x) dx sin 4x cos 5x dx = 2 1 1 = − cos 9x + cos x + C, 18 2 where we used that cos(−x) = cos x. Rπ 2. Find −π sin mx sin nx dx, where m and n are positive integers. First, consider m 6= n. Then, Z π Z 1 π sin mx sin nx dx = − cos(m + n)x − cos(m − n)x dx 2 −π −π π 1 1 1 sin(m + n)x − sin(m − n) =− 2 m+n m−n −π =0 If m = n, then Z π Z 1 π sin mx sin nx dx = − cos(2m)x − 1 dx 2 −π −π π 1 1 =− sin(2m)x − x 2 2m −π =π 4 Integrals of the form R tann x dx and R cotn x dx In the tangent case, we will use tan2 x = sec2 x − 1. In the cotangent case, we will use cot2 x = csc2 x − 1. Here, we will only replace tan2 x or cot2 x, distribute, integrate what we can, then repeat as necessary. Examples 1. Find R Z tan4 x dx tan4 x dx = Z tan2 x(sec2 x − 1) dx Z Z 2 2 = tan x sec x dx − tan2 x dx Z 1 = tan3 x − (sec2 x − 1) dx 3 1 = tan3 x − tan x + x + C 3 2. Find R Z 5 cot5 x dx cot5 x dx = Z cot3 x(csc2 x − 1) dx Z Z 3 2 = cot x csc x − cot3 x dx Z 1 = − cot4 x − cot x(csc2 x − 1) dx 4 Z Z 1 cos x = − cot4 x − cot x csc2 x dx + dx 4 sin x 1 1 = − cot4 x + cot2 x + ln | sin x| + C 4 2 Integrals of the form R tanm x secn dx and R cotm x cscn x dx If n is even, use either sec2 x = tan2 x + 1 or csc2 x = cot2 x + 1 to replace all but 2 powers of sec x or csc x, then you can use a u-substitution to integrate. If m is odd, we will use that the derivative of sec x is sec x tan x (or the derivative of csc x is − csc x cot x), and replace m − 1 powers of either tangent or cotangent using a Pythagorean identity. Examples 1. Find R Z tan1/2 x sec4 x dx tan1/2 x sec4 x dx = tan1/2 x(tan2 +1) sec2 x dx Z Z = tan5/2 x sec2 x dx + tan1/2 x sec2 x dx = 2. Find R Z Z 2 2 tan7/2 x + tan3/2 x + C 7 3 cot3 x csc3/2 x dx cot3 x csc3/2 x dx = Z cot x(csc2 x − 1) csc3/2 x dx Z Z = cot x csc x csc5/2 x dx − cot x csc x csc1/2 x dx 2 2 = − csc7/2 x + csc3/2 +C 7 3