Download 5.) Solve the inequality. -6 ≤ 3x - 3 ≤ 12 6.) Solve 4x + 5 = 10 7.) Is

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 2113 Midterm Review
1.) Evaluate -5x5 + 4x - 5 when x = -2.
2.) Simplify the expression.
12(x-y2) - 13(x+y) + 5y2 - 6y
3.) Solve. 4(2x - 4) + 2x = -9(x + 7)
4.) Solve the inequality.
4 + 3x ≥ 10x + 18
Dec 8­7:54 AM
5.) Solve the inequality.
-6 ≤ 3x - 3 ≤ 12
6.) Solve 4x + 5 = 10
7.) Is the given relation a function?
{ (9,0) , (10, -1) , (14, 7) , (9, 7)}
8.) Find the slope of the line passing through
(4, -9) and (-7, 13)
Dec 8­7:59 AM
1
9.) Graph the line: -4x + 6y = 12
10.) Write the equation of the line in slope-intercept
form that has a slope of 3 and passes through the
point (8, -1).
11.) Write the equation of the line that passes
through the points (9, -1) and (4, 0).
12.) Graph the absolute value function.
f(x) = -3 x + 2 - 4
Dec 8­8:03 AM
13.) Solve the system of linear equations.
5x - y = 16
2x + 3y = 3
14.) Solve the system of linear equations.
x + 3y = 18
-x + 2y = 7
15.) Find the vertex of the quadratic function.
f(x) = -2x2 + 4x + 6
16.) Graph the quadratic function.
f(x) = 3(x - 1)2 - 2
Dec 8­8:07 AM
2
17.) Factor. x2 - 6x - 40
18.) Solve. 3x2 - 4 = 4x
19.) Simplify. √-100
20.) Simplify. (3 - 4i)(4 + 5i)
Dec 8­8:09 AM
21.) Solve. 2x2 + 7x - 5 = 3x
22.) Solve. 16x2 + 29 = 20
23.) Solve. x2 + 8x ≤ -15
24.) (2x-3y4)4
4xy-9
Dec 8­8:12 AM
3
25.) Multiply. (4x - 9)(3x3 + 5)
26.) Add. (x2 + 4x - 5) + (-5x2 +5x -10)
27.) Factor. x3 + 2x2 - 9x - 18
28.) Divide the polynomials.
(x4 - 4x3 + 5x2 + 8x - 4)÷(x-2)
Dec 8­8:16 AM
29.) Subtract the matrices.
3 4
-1 2
-
-4 1
10 2
30.) Multiply the matrices.
9 10
-2 4
7 -2
8 0
Formulas you need to know:
Slope-intercept form: y = mx + b
Point-slope form: y - y1 = m(x - x1)
Vertex Formula: x = -b
2a
Quadratic Formula: x= -b ±√b2 -4ac
2a
Difference of Squares: a2 - b2 = (a - b)(a + b)
Quadratic Function in Vertex Form: y = a(x - h)2 + k
The vertex is (h, k).
Dec 8­8:18 AM
4
Related documents