Download Integration Review : Simplify the Integrand if Possible.

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Integration Review
Simplify the integrand if possible.
– p. 1/12
Integration Review
Simplify the integrand if possible.
Look for an obvious or a clever substitution.
– p. 1/12
Integration Review
Simplify the integrand if possible.
Look for an obvious or a clever substitution.
Decide how you are going to integrate:
* Integration by Parts
* Trigonometric Integration
* Trigonometric Substitution
* Partial Fractions.
– p. 1/12
Integration Review
Simplify the integrand if possible.
Look for an obvious or a clever substitution.
Decide how you are going to integrate:
* Integration by Parts
* Trigonometric Integration
* Trigonometric Substitution
* Partial Fractions.
If none of the above work, try to manipulate the
integrand to transform it into an easier form which you
can apply the above techniques.
– p. 1/12
Integration Review : Simplify the Integrand if Possible.
!
(x + sin x)2 dx
– p. 2/12
Integration Review : Simplify the Integrand if Possible.
!
(x + sin x)2 dx
! 2
= x + 2x sin x + sin2 xdx
– p. 2/12
Integration Review : Simplify the Integrand if Possible.
!
(x + sin x)2 dx
! 2
= x + 2x sin x + sin2 xdx
! 2
1 3
1. x dx = x + C
3
!
!
2. 2x sin xdx = 2 x sin xdx
!
= 2(−x cos x − (− cos x) · 1dx) by Integration by Parts,
= −2x
x + 2 sin x + C
! cos
3. sin2 xdx
! 1 − cos(2x)
1
1
=
dx = (x − sin(2x)) + C
2
2
2
– p. 2/12
Integration Review : Simplify the Integrand if Possible.
!
(x + sin x)2 dx
! 2
= x + 2x sin x + sin2 xdx
! 2
1 3
1. x dx = x + C
3
!
!
2. 2x sin xdx = 2 x sin xdx
!
= 2(−x cos x − (− cos x) · 1dx) by Integration by Parts,
= −2x
x + 2 sin x + C
! cos
3. sin2 xdx
! 1 − cos(2x)
1
1
=
dx = (x − sin(2x)) + C
2
2
2
Therefore,
!
1 3
1
1
2
(x+sin x) dx = x −2x cos x+2 sin x+ x− sin(2x)+C
3
2
4
– p. 2/12
Integration Review : Simplify the integrand if Possible.
! sec x cos(2x)
dx
Try
2 sin x + sec x
– p. 3/12
Integration Review: u-Substitution.
!
1
√ dx
√
x+x x
– p. 4/12
Integration Review: u-Substitution.
!
1
√ dx
√
x+x x
√
1
Let u = x so that du = √ dx and x = u2 .
2 x
– p. 4/12
Integration Review: u-Substitution.
!
1
√ dx
√
x+x x
√
1
Let u = x so that du = √ dx and x = u2 .
2 x
Then
!
!
1
1
√ dx =
√ dx
√
x+x x
(1 + x) x
– p. 4/12
Integration Review: u-Substitution.
!
1
√ dx
√
x+x x
√
1
Let u = x so that du = √ dx and x = u2 .
2 x
Then
!
!
1
1
√ dx =
√ dx
√
x+x x
(1 + x) x
!
!
1
1
=
2du = 2
du
2
2
1+u
1+u
– p. 4/12
Integration Review: u-Substitution.
!
1
√ dx
√
x+x x
√
1
Let u = x so that du = √ dx and x = u2 .
2 x
Then
!
!
1
1
√ dx =
√ dx
√
x+x x
(1 + x) x
!
!
1
1
=
2du = 2
du
2
2
1+u
1+u
√
−1
−1
= 2 tan u + C = 2 tan
x+C
– p. 4/12
Integration Review: u-Substitution.
Try
!
Try
!
√
−1
tan
xdx
e
√
x dx
– p. 5/12
Integration Review: u-Subsitution and Trigonometric Substitution.
!
1
√
dx
x2 4x2 + 1
– p. 6/12
Integration Review: u-Subsitution and Trigonometric Substitution.
!
1
√
dx
x2 4x2 + 1
√
Try with u = 4x2 + 1 and complete the integration with
a trigonometric substitution.
– p. 6/12
Clever u-Substitution
! ln(tan x)
dx
sin x cos x
– p. 7/12
Clever u-Substitution
! ln(tan x)
dx
sin x cos x
Let u = ln(tan x) so that
cos x
1
1
1
2
· sec xdx =
·
dx =
dx.
du =
2
tan x
sin x cos x
sin x cos x
– p. 7/12
Clever u-Substitution
! ln(tan x)
dx
sin x cos x
Let u = ln(tan x) so that
cos x
1
1
1
2
· sec xdx =
·
dx =
dx.
du =
2
tan x
sin x cos x
sin x cos x
Then
! ln(tan x)
!
dx = udu
sin x cos x
– p. 7/12
Clever u-Substitution
! ln(tan x)
dx
sin x cos x
Let u = ln(tan x) so that
cos x
1
1
1
2
· sec xdx =
·
dx =
dx.
du =
2
tan x
sin x cos x
sin x cos x
Then
! ln(tan x)
!
dx = udu
sin x cos x
1
1 2
= u + C = (ln(tan x))2 + C .
2
2
– p. 7/12
Clever u-Substitution.
Try
!
Try
!
cos x cos3 (sin x)dx
1
1 + 2ex
− e−x
dx
– p. 8/12
Integration by Parts
! ln(x + 1)
dx
2
x
– p. 9/12
Integration by Parts
! ln(x + 1)
dx
2
x
! 1 1
1
= − ln(x + 1) − (− )
dx by Integration by Parts,
x
x x+1
– p. 9/12
Integration by Parts
! ln(x + 1)
dx
2
x
! 1 1
1
= − ln(x + 1) − (− )
dx by Integration by Parts,
x
x x+1
!
1
1
= − ln(x + 1) +
dx
x
x(x + 1)
– p. 9/12
Integration by Parts
! ln(x + 1)
dx
2
x
! 1 1
1
= − ln(x + 1) − (− )
dx by Integration by Parts,
x
x x+1
!
1
1
= − ln(x + 1) +
dx
x
x(x + 1)
! 1
1
1
−
dx by Partial Fractions,
= − ln(x + 1) +
x
x x+1
– p. 9/12
Integration by Parts
! ln(x + 1)
dx
2
x
! 1 1
1
= − ln(x + 1) − (− )
dx by Integration by Parts,
x
x x+1
!
1
1
= − ln(x + 1) +
dx
x
x(x + 1)
! 1
1
1
−
dx by Partial Fractions,
= − ln(x + 1) +
x
x x+1
1
= − ln(x + 1) + ln |x| − ln |x + 1| + C
x
– p. 9/12
Integration by Parts
! ln(x + 1)
dx
2
x
! 1 1
1
= − ln(x + 1) − (− )
dx by Integration by Parts,
x
x x+1
!
1
1
= − ln(x + 1) +
dx
x
x(x + 1)
! 1
1
1
−
dx by Partial Fractions,
= − ln(x + 1) +
x
x x+1
1
= − ln(x + 1) + ln |x| − ln |x + 1| + C
x
x
= ln
+C
1
(x + 1) x (x + 1)
– p. 9/12
Trigonometric Integration
!
tan4 xdx
– p. 10/12
Trigonometric Integration
!
tan4 xdx
!
= (tan2 x)2 dx
– p. 10/12
Trigonometric Integration
!
tan4 xdx
!
= (tan2 x)2 dx
!
= (sec2 x − 1)2 dx
– p. 10/12
Trigonometric Integration
!
tan4 xdx
!
= (tan2 x)2 dx
!
= (sec2 x − 1)2 dx
!
= sec4 x − 2 sec2 x + 1dx
– p. 10/12
Trigonometric Integration
!
tan4 xdx
!
= (tan2 x)2 dx
!
= (sec2 x − 1)2 dx
!
= sec4 x − 2 sec2 x + 1dx
!
= (tan2 x + 1) sec2 x − 2 sec2 x + 1dx
– p. 10/12
Trigonometric Integration
!
tan4 xdx
!
= (tan2 x)2 dx
!
= (sec2 x − 1)2 dx
!
= sec4 x − 2 sec2 x + 1dx
!
= (tan2 x + 1) sec2 x − 2 sec2 x + 1dx
1
= tan3 x + tan x − 2 tan x + x + C
3
– p. 10/12
Trigonometric Integration
!
tan4 xdx
!
= (tan2 x)2 dx
!
= (sec2 x − 1)2 dx
!
= sec4 x − 2 sec2 x + 1dx
!
= (tan2 x + 1) sec2 x − 2 sec2 x + 1dx
1
= tan3 x + tan x − 2 tan x + x + C
3
1
= tan3 x − tan x + x + C .
3
– p. 10/12
Trigonometric Integration
Try
!π
4
0
tan5 θ sec3 θdθ
– p. 11/12
Partial Fractions
Try
!
1
dx
4
x(x + 1)
– p. 12/12
Related documents