Download 2 (a) - MSDWT Sites

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
Chapter 42
Circulation and Gas Exchange
Lectures by
Erin Barley
Kathleen Fitzpatrick
© 2011 Pearson Education, Inc.
Figure 42.3a
(a) An open circulatory system
Heart
Hemolymph in sinuses
surrounding organs
Pores
Tubular heart
Figure 42.3b
(b) A closed circulatory system
Heart
Interstitial fluid
Blood
Small branch
vessels in
each organ
Dorsal
Auxiliary
vessel
hearts
(main heart)
Ventral vessels
Figure 42.4a
(a) Single circulation
Gill
capillaries
Artery
Heart:
Atrium (A)
Ventricle (V)
Vein
Body
capillaries
Key
Oxygen-rich blood
Oxygen-poor blood
Figure 42.4b
(b) Double circulation
Pulmonary circuit
Lung
capillaries
A
V
Right
A
V
Left
Systemic
capillaries
Key
Systemic circuit
Oxygen-rich blood
Oxygen-poor blood
Figure 42.5a
Amphibians
Pulmocutaneous circuit
Lung
and skin
capillaries
Atrium
(A)
Atrium
(A)
Right
Left
Ventricle (V)
Systemic
capillaries
Systemic circuit
Key
Oxygen-rich blood
Oxygen-poor blood
Figure 42.5b
Reptiles (Except Birds)
Pulmonary circuit
Lung
capillaries
Right
systemic
aorta
Atrium
(A)
Ventricle
(V)
A
Right
V
Left
Left
systemic
aorta
Incomplete
septum
Systemic
capillaries
Systemic circuit
Key
Oxygen-rich blood
Oxygen-poor blood
Figure 42.5c
Mammals and Birds
Pulmonary circuit
Lung
capillaries
A
Atrium
(A)
Ventricle
(V)
Right
V
Left
Systemic
capillaries
Systemic circuit
Key
Oxygen-rich blood
Oxygen-poor blood
Figure 42.5
Amphibians
Pulmocutaneous circuit
Pulmonary circuit
Lung
and skin
capillaries
Atrium
(A)
Atrium
(A)
Right
Pulmonary circuit
Lung
capillaries
Lung
capillaries
Right
systemic
aorta
A
V
Right
Left
Mammals and Birds
Reptiles (Except Birds)
A
V
Left
Left
systemic
aorta
Incomplete
septum
A
V
Right
A
V
Left
Ventricle (V)
Systemic circuit
Key
Oxygen-rich blood
Oxygen-poor blood
Systemic
capillaries
Systemic
capillaries
Systemic
capillaries
Systemic circuit
Systemic circuit
Figure 42.6
Capillaries of
head and forelimbs
Superior vena cava
Pulmonary
artery
Capillaries
of right lung
Pulmonary
vein
Right atrium
Right ventricle
Pulmonary
artery
Aorta
Capillaries
of left lung
Pulmonary vein
Left atrium
Left ventricle
Aorta
Inferior
vena cava
Capillaries of
abdominal organs
and hind limbs
Figure 42.7
Aorta
Pulmonary artery
Pulmonary
artery
Right
atrium
Left
atrium
Semilunar
valve
Semilunar
valve
Atrioventricular
valve
Atrioventricular
valve
Right
ventricle
Left
ventricle
Figure 42.8-1
1 Atrial and
ventricular diastole
0.4
sec
Figure 42.8-2
2 Atrial systole and ventricular
diastole
1 Atrial and
ventricular diastole
0.1
sec
0.4
sec
Figure 42.8-3
2 Atrial systole and ventricular
diastole
1 Atrial and
ventricular diastole
0.1
sec
0.4
sec
0.3 sec
3 Ventricular systole and atrial
diastole
Figure 42.9-1
1
SA node
(pacemaker)
ECG
Figure 42.9-2
1
SA node
(pacemaker)
ECG
2
AV
node
Figure 42.9-3
1
SA node
(pacemaker)
ECG
2
AV
node
3
Bundle
branches
Heart
apex
Figure 42.9-4
1
SA node
(pacemaker)
ECG
2
AV
node
3
Bundle
branches
4
Heart
apex
Purkinje
fibers
Figure 42.10a
Valve
Basal lamina
Endothelium
Smooth
muscle
Connective
tissue
Endothelium
Capillary
Smooth
muscle
Connective
tissue
Artery
Vein
Arteriole
Venule
Figure 42.13
Direction of blood flow
in vein (toward heart)
Valve (open)
Skeletal muscle
Valve (closed)
Figure 42.16
Figure 42.18a
3
2
1
Collagen fibers
Platelet
plug
Platelet
Fibrin
clot
Clotting factors from:
Platelets
Damaged cells
Plasma (factors include calcium, vitamin K)
Enzymatic cascade
Prothrombin

Thrombin
Fibrinogen
Fibrin
Fibrin clot
formation
Figure 42.18b
Fibrin
clot
Red blood cell
5 m
1
3
2
4
Figure 42.19
Stem cells
(in bone marrow)
Myeloid
stem cells
Lymphoid
stem cells
B cells T cells
Erythrocytes
Neutrophils
Basophils
Lymphocytes
Monocytes
Platelets
Eosinophils
RESPIRATORY
SYSTEM
Tracheoles Mitochondria
Muscle fiber
2.5 m
Figure 42.24
Tracheae
Air sacs
Body
cell
Air
sac
Tracheole
Trachea
External opening
Air
Figure 42.22
Coelom
Gills
Parapodium
(functions as gill)
(a) Marine worm
Gills
Tube foot
(b) Crayfish
(c) Sea star
Figure 42.23
O2-poor blood
Gill
arch
O2-rich blood
Lamella
Blood
vessels
Gill arch
Water
flow
Operculum
Water flow
Blood flow
Countercurrent exchange
PO (mm Hg) in water
2
150 120 90 60 30
Gill filaments
Net diffusion of O2
140 110 80 50 20
PO (mm Hg)
2
in blood
Figure 42.23b
O2-poor blood
O2-rich blood
Lamella
Water flow
Blood flow
Countercurrent exchange
PO (mm Hg) in water
2
150 120 90 60 30
Net diffusion of O2
140 110 80 50 20
PO (mm Hg)
2
in blood
Figure 42.25a
Nasal
cavity
Pharynx
Left
lung
Larynx
(Esophagus)
Trachea
Right lung
Bronchus
Bronchiole
Diaphragm
(Heart)
Figure 42.25b
Branch of
pulmonary vein
(oxygen-rich
blood)
Terminal
bronchiole
Branch of
pulmonary artery
(oxygen-poor
blood)
Alveoli
Capillaries
Figure 42.28
1
Rib cage
expands.
2
Air
inhaled.
Lung
Diaphragm
Rib cage gets
smaller.
Air
exhaled.
BOYLE’S LAW
P=1/V
Figure 42.29
Homeostasis:
Blood pH of about 7.4
CO2 level
decreases.
Response:
Rib muscles
and diaphragm
increase rate
and depth of
ventilation.
Stimulus:
Rising level of
CO2 in tissues
lowers blood pH.
Carotid
arteries
Sensor/control center:
Cerebrospinal fluid
Medulla
oblongata
Aorta
Figure 42.30a
1 Inhaled air
8 Exhaled air
Alveolar
epithelial
cells
2 Alveolar
spaces
CO2
O2
Alveolar
capillaries
7 Pulmonary
arteries
3 Pulmonary
veins
6 Systemic
veins
4 Systemic
arteries
Heart
CO2
O2
Systemic
capillaries
5 Body tissue
(a) The path of respiratory gases in the circulatory
system
Figure 42.UN01
Iron
Heme
Hemoglobin
O2 saturation of hemoglobin (%)
Figure 42.31a
100
O2 unloaded
to tissues
at rest
80
O2 unloaded
to tissues
during exercise
60
40
20
0
0
20
40
60
Tissues during Tissues
at rest
exercise
PO2 (mm Hg)
80
100
Lungs
(a) PO2 and hemoglobin dissociation at pH 7.4
O2 saturation of hemoglobin (%)
Figure 42.31b
100
pH 7.4
80
pH 7.2
Hemoglobin
retains less
O2 at lower pH
(higher CO2
concentration)
60
40
20
0
0
20
40
60
80
PO2 (mm Hg)
(b) pH and hemoglobin dissociation
100
Figure 42.32a
Body tissue
CO2 produced
CO2 transport
from tissues
Interstitial
CO2
fluid
Plasma
CO2
within capillary
Capillary
wall
CO2
H2O
Red
blood
cell
H2CO3
Hb
Carbonic
acid
HCO3 
Bicarbonate
Hemoglobin (Hb)
picks up
CO2 and H+.
H+
HCO3
To lungs
Figure 42.32b
To lungs
CO2 transport
to lungs
HCO3
HCO3 
H2CO3
H+
Hb
Hemoglobin
releases
CO2 and H+.
H2O
CO2
CO2
CO2
CO2
Alveolar space in lung
Related documents