Download Alternating Current

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Rotating Generators and
Faraday’s Law
 B   B dA  B A  B A cos 

 B  B A cos t
d B
d

  B A cos t
dt
dt
 B
0
  o  t
A  sin t
   N B
A  sin t

For N loops of wire
Alternating Current
V  t   Vo
I  t   Io
V  t   Vo sin t
V  t  Vo
I(t) 

sin t  Io sin t
R
R
AC Generator and a Resistor
  peak cos  t 
VR  VR peak cos  t 
VR VR peak
IR 

cos  t   I peak cos  t 
R
R
AC Power


P  I2 R  I2peak cos2  t  R
2
V
1 peak
1 2
P  Pav  I peak R 
2
2 R
T/2
1
1
2
cos  t dt  ?

T T / 2
2
1 1
cos    cos 2
2 2
2
Root Mean Square (rms)
V  t   Vpeak cos t
V2 
Vrms  V 
2
I(t)  I peak cos t
2
Vpeak
I2 
2
2
Vpeak
2

Vpeak
2
Irms 
1 2
2
P  I peak R  I rms
R
2
2
V
1 peak
2
Vrms
P

2 R
R
I 
2
I 2peak
2
I2peak
2

Ipeak
2
Inductive Circuits
VL  VL peak cos  t   L
dI
dt
  peak cos  t 
I
VL peak
L
sin  t  
I peak
VL

XL
VL peak
XL
dI
VL  L
dt


sin  t   Ipeak cos  t  
2

XL  L
Inductive Reactance
Capacitive Circuits
Q  CVC
  peak cos  t 
I  CVC peak sin  t   
I peak
VC

XC
VC peak
XC


sin  t   I peak cos  t  
2

1
XC 
C
Capacitive Reactance
Voltage transformers
 solenoid
 NP 
  o
IP  A


d B
Vs  N s
dt
d B
VP  N P
dt
NS  NP  step up transformer
NP  NS  step down transformer
d B VP VS


dt
N P NS
Current in transformers
PPr imary  PSecondary
VP IP  VSIS
IP
NS
VS 
VP
NP
IS
NP IP  NSIS
Actually currents are 180 degrees out of phase
Example: transformers
Vp  110V
IP
N p  916
Ns  100
IS
What is Vs ?
LC Circuits
Kirchhoff Loop Equation:
Q
dI
L 0
C
dt
2
dQ Q

0
2
dt
LC
Solution:
Q  Qmax cos  t   
1

LC
I  t  0  0
Q(t  0)  Qmax
Energy in an LC circuit
Q  Qmax cos  t 
dQ
I
 Q max  sin  t 
dt
1

LC
Imax  Qmax 
1 Q2 Q2max
UE 

cos 2  t 
2 C
2C
2
Q
1 2 L2Q2max
U B  LI 
sin 2  t   max sin 2  t 
2
2
2C
2
2
Q2max
Q
Q
UE  UB 
cos 2  t   max sin 2  t   max
2C
2C
2C
Active Figure 32.17
(SLIDESHOW MODE ONLY)
LRC Circuits
Kirchhoff Loop Equation:
Q
dI
 RI  L  0
C
dt
d 2Q
dQ Q
L 2 R
 0
dt
dt C
Solution:
Q  Qmax ebt cos   ' t  
R
b 
2L
1
R2
' 
 2
LC 4L
Damped RLC Circuit
• The maximum value
of Q decreases after
each oscillation
– R < RC
• This is analogous to
the amplitude of a
damped spring-mass
system
Active Figure 32.21
(SLIDESHOW MODE ONLY)
LRC Circuits
Q  Qo e

R
t
2L
cos   ' t   
1
R2
' 
 2
LC 4L
• Underdamped
• Critically Damped
• Overdamped
1
R2
 2
LC 4L
1
R2
 2
LC 4L
4L
 R2
C
4L
 R2
C
1
R2
 2
LC 4L
4L
 R2
C
Driven RLC Circuit
dI
Q
Vapp peak cos t  L  IR   0
dt
C
d 2Q
dQ 1
L 2 R
 Q  Vapp peak cos t
dt
dt C
Phasor Diagrams
Z  R   X L  XC 
2
 XL  XC 
  tan 

R


1
2
Resonance
X L  XC
1

LC
I
Vapp peak
R   X L  XC 
2
2
cos  t   
Power:
2
1 2
1 Vapp peak
1 Vapp peak Vapp peak R 1
Pav  I peak R 
R
 I peak Vapp peak cos 
2
2
2 Z
2
Z
Z 2
Pav  I rms Vapp rms cos 
Power Factor
What is Power factor at Resonance?
More Resonance
Pav 

2
2
Vapp
R

rms
L  
2
2
2
o

2
 2 R 2
o o L
Q


R
41.
An emf of 96.0 mV is induced in the windings of a coil
when the current in a nearby coil is increasing at the rate of 1.20
A/s. What is the mutual inductance of the two coils?
49.
A fixed inductance L = 1.05 μH is used in series with a
variable capacitor in the tuning section of a radiotelephone on a
ship. What capacitance tunes the circuit to the signal from a
transmitter broadcasting at 6.30 MHz?
55.
Consider an LC circuit in which L = 500 mH and C =
0.100 μF. (a) What is the resonance frequency ω0? (b) If a
resistance of 1.00 kΩ is introduced into this circuit, what is the
frequency of the (damped) oscillations? (c) What is the percent
difference between the two frequencies?
LC Demo
R = 10 W
C = 2.5 F
L = 850 mH
1. Calculate period
2. What if we change
C = 10 F
3. Underdamped?
4. How can we
change damping?