Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Physics 441
Electro-Magneto-Statics
M. Berrondo
Physics BYU
1
1. Introduction
• Electricity and Magnetism as a single field
(even in static case, where they decouple)
Maxwell:
* vector fields
* sources (and sinks)
• Linear coupled PDE’s
* first order (grad, div, curl)
* inhomogeneous (charge & current distrib.)
~
F J
~
F J
Physics BYU
1
2
Tools
Math
• trigonometry
• vectors (linear combination)
dot, cross, Clifford
• vector derivative operators
/ xi ,
,
,
,
• Dirac delta function
• DISCRETE TO CONTINUUM
• INTEGRAL THEOREMS:
* Gauss, Stokes, FundThCalc
• cylindrical, spherical coord.
• LINEARITY
Physics
• trajectories: r(t)
• FIELDS: * scalar, vector
* static, t-dependent
• SOURCES: charge, current
• superposition of sources =>
• superposition of fields
• unit point sources
• Maxwell equation
• field lines
• potentials
• charge conservation
interpretation of equations and their solutions
Physics BYU
3
2. Math. Review
•
•
•
•
sum of vectors: A , B => A + B
dilation: c , A => c A
linear combinations: c1 A + c2 B
scalar (dot) product:
A , B => A B = A B cos ( ), a scalar
where A2 = A A (magnitude square)
• cross product:
A , B => A B = n A B |sin( ) |, a new vector,
with n A and B, and nn = n2 = 1
• orthonormal basis: {e1 , e2 , e3 } = {i , j , k}
Physics BYU
4
Geometric Interpretation:
Dot product
Physics BYU
5
Cross Product and triple dot product
Physics BYU
6
Rotation of a vector (plane)
• Assume s in the x-y plane
• Vector
s‘ = k x s
• Operation k x rotates s
by 90 degrees
s xi yj
s' k ( xi yj) yi xj
• k x followed by k x again
equivalent to multiplying
by -1 in this case!!
Physics BYU
y
s’
s
x
7
Rotation of a vector (3-d)
n unit vector: n2 = 1 defines rotation axis
= rotation angle
vector r r’
r' e n r
r' e n (r// r ) r// e nr
r' r// cos r sin n r
where
r n (n r )
r r r// n (n r )
Physics BYU
8
Triple dot product
A (B C) C (A B) B (C A)
e1
A Bx
Cx
e2
By
Cy
e3
Bz
Cz
Ax
Bx
Cx
Ay
By
Cy
Az
Bz
Cz
is a scalar and corresponds to the (oriented)
volume of the parallelepiped {A, B, C}
Physics BYU
9
Triple cross product
• The cross product is not associative!
• Jacobi identity:
A (B C) C ( A B) B (C A) 0
• BAC-CAB rule:
A (B C) B( A C) C( A B)
is a vector linear combination of B and C
Physics BYU
10
Inverse of a Vector
0
|
vector
1
|
n-1 = n as a unit
n A
A ( An) 2
A A
1
1
along any direction in R2 or R3
Physics BYU
11
Clifford Algebra Cl3 (product)
• starting from R3 basis {e1 , e2 , e3 }, generate
all possible l.i. products
• 8 = 23 basis elements of the algebra Cl3
• Define the product as:
AB A B iA B
• with
i e1e 2e3
Physics BYU
12
1
0
scalar
1
vector
iê1= ê2ê3 iê2= ê3ê1 iê3=ê1ê2
2
bivector
i = ê 1ê 2ê 3
3
pseudoscalar
ê1
ê2
ê3
e1 e 2 e3 1,
2
2
2
e1e 2 e 2e1 (e1e 2 ) 2 1,
eˆ i , eˆ k eˆ ieˆ k eˆ k eˆ i 2 ik
C i A i B
Physics BYU
R3
R
iR
i R3
13
Clifford Algebra Cl3
•
•
•
•
Non-commutative product w/ A A = A2
Associative:
(A B) C = A (B C)
Distributive w.r. to sum of vectors
*symmetric part dot product
*antisym. part proportional cross product
• Closure: extend the vector space until every
product is a linear combination of
elements of the algebra
Physics BYU
14
Subalgebras
• R
Real numbers
• C = R + iR
Complex numbers
• Q = R + iR3
Quaternions
Product of two vectors is a quaternion:
AB A B iA B
AB scalar A B (AB BA) / 2
AB
bivector
iA B (AB BA) / 2 A B
represents the oriented surface (plane)
orthogonal to A x B.
Physics BYU
15
Bivector: oriented surface
b
a
i ab a b
sweep
b
a
i b a b a a b
• antisymmetric, associative
• absolute value area
Physics BYU
16
Differential Calculus
• Chain rule:
In 2-d:
f
df
dxi
i xi
f
f
df dx dy
x
y
f f ( x, y )
xdx 2 ydy
• Is 2 ydx xdy an “exact differential”?
ydx xdy
A
B
• given A( x, y)dx B( x, y)dy ,
y x
Physics BYU
17
• In 3-d:
1.
f
df f dr
x
2.
f
y
dx
f
dy
z
dz
df 0
b
3.
df
F (b) F ( a )
independen t of path
a
• Geometric interpretation:
0 when T dr
dT T dr cos
max when T // dr
T
points in direction of steepest ascent
Physics BYU
18
eˆ1 eˆ 2 eˆ 3
x
y
z
Examples:
z kˆ ,
del operator
dg ˆ
g ( x )
i
dx
r rˆ
df
f (r ) rˆ
dr
1
1
r
2 rˆ 3
r
r
r
Physics BYU
19
Gradient of r
• Contour surfaces: spheres
• gradient is radial
f (r ) r
r // rˆ
and
df dr (r ) d r r dr
r 1
r r̂
• Algebraically:
r 2rr ( x y z ) 2r r rˆ
2
and, in general,
2
2
2
df
f (r ) f ' (r )rˆ rˆ
dr
Physics BYU
20
Divergence of a Vector Field
• E (r) scalar field (w/ dot product)
E x E y E z
E
x
y
z
Ex
E y
x y z E
z
• It is a measure of how much the filed lines
diverge (or converge) from a point (a line, a
plane,…)
Physics BYU
21
• Divergence as FLUX:
E
x
( )
E x ( x dx) E x ( x)
dx
x
dx
Examples:
kˆ 0
( z kˆ ) 1
r 3
1 d 2
(rˆ F (r )) 2
(r F (r ))
r dr
rˆ
2 0
for r 0
r
Physics BYU
22
Curl of a Vector Field
ˆi
E
x
Ex
ˆj
y
Ey
kˆ
1
2
z r sin
Ez
rˆ
r
Er
r θˆ
rE
r sin φˆ
r sin E
The curl measures circulation about an axis.
Examples:
E(r ) xˆj
E kˆ
E(r ) yˆi xˆj
E 2kˆ
Physics BYU
23
Clifford product del w/ a cliffor
• For a scalar field
T = T( r ),
T grad T
• For a vector field
E = E( r ),
E E i E
• For a bivector field
i B = i B( r ),
(i B) i B B
Physics BYU
24
Second order derivatives
• For a scalar:
2T (T ) (T ) i (T )
2T (T ),
(T ) 0
• For a vector:
2E (E) ( E) i( E)
E ( E) ( E),
( E) 0
2
Physics BYU
25
What do we mean by “integration”?
cd
c
dw = c(cd)/ 2
dr
dg = (2pr) dr
||
dl
rd
dr
da= (rd)dr
2
dy
dl (dx) (dy ) 1 dx
dx
2
Physics BYU
2
26
Cliffor differentials
• dk is a cliffor representing the “volume”
element in k dimensions
• k = 1 dl is a vector e1 dx
(path integral)
• k = 2 i nda bivector e1 dx e2 dy
(surface integral)
• k = 3 i dt ps-scalar e1 dx e2 dy e3 dz
(volume integral)
Physics BYU
27
Fundamental Theorem of Calculus
d F ( ) () d
k 1
k
F ( )
k 1
V
V
b
(T ) d l T (b) T (a)
Particular cases:
a
E dt E da
V
V
B d a B d l
S
Gauss’s theorem
Stokes’ theorem
S
Physics BYU
28
Delta “function” (distribution)
• 1-d:
( x) 0 for x 0,
( x' )dx' ( x' )dx' 1,
( x' ) f ( x' )dx' f (0),
[ f ]( x) f ( x)
d ( x)
( x)
dx
1
(ax)
( x)
|a|
unit area
( x x' ) f ( x' )dx' f ( x)
unit convolutio n
as a distributi on
scaling
step “function”
1
x
Physics BYU
29
• Divergence theorem and unit point source
apply
E dt E da
V
V
to
rˆ
E (r ) 2
r
for a sphere of radius
rˆ
rˆ
2
ˆ
E
d
a
d
a
r
r
V
V r 2
V r 2 dΩ V dΩ 4p
rˆ
V E dt V r 2 dt 4p
Physics BYU
30
rˆ
2 4p ( 3) (r )
r
and
1
(3) (r).
4p r
2
Displacing the vector r by r‘:
1
(3) (r r' ).
4p | r r' |
2
Physics BYU
31
Inverse of Laplacian
• To solve
2 A(r) B(r)
1
1
B(r ' )dt ' B(r )
4p | r r ' |
2
1
1
1
1
A(r ) 2 B(r )
B(r ' )dt '
4p | r r ' |
4p
so
1
B(r )
r
• In short-hand notation:
1
A(r )
4p
1
r B(r' )dt ' ,
Physics BYU
where r | r r ' |
32
Orthogonal systems of coordinates
•
•
•
•
•
coordinates: (u1, u2, u3 )
orthogonal basis:
(e1, e2, e3 )
scale factors:
(h1, h2, h3 )
volume:
d (vol) dt h1h2 h3 du1du2 du3
area u3 :
da3 h1h2 du1du2 e3
• displacement vector:
d l h1du1e1 h2 du2e 2 h3du3e3
Physics BYU
33
Scale Factors
Cartesian
Cylindrical
Spherical
du1
du2
du3
h1
h2
h3
dx
ds
dr
dy
d
d
dz
dz
d
1
1
1
1
s
r
1
1
r sin
• polar (s, ):
s s sˆ
• cylindrical (s, , z ):
r s sˆ z eˆ 3
• spherical (r, , ):
r r rˆ
Physics BYU
34
• Grad:
• Div: E
• Curl:
• Laplacian:
uˆ 1 T uˆ 2 T uˆ 3 T
T
h1 u1 h2 u2 h3 u3
1 (E1 h2 h3 ) h1 E2 h3 (h1 h2 E3 )
h1 h2 h3
u1
u2
u3
h1 uˆ 1 h2 uˆ 2
1
E
h1 h2 h3 u1
u2
h1 E1 h2 E 2
h3 uˆ 3
u3
h3 E3
1 h2 h3 T h1 h3 T h1 h2 T
T
h1 h2 h3 u1 h1 u1 u2 h2 u2 u3 h3 u3
2
Physics BYU
35
Maxwell’s Equations
1
• Electro-statics:
E(r )
• Magneto-statics:
(iB(r)) 0 J(r)
• Maxwell:
0
(r )
1
F ( E icB )
(c J )
0c
1
0 c 377
0c
Physics BYU
36
Formal solution
~
F (r ) J (r )
~
F J
1
separates into:
1
1 1
E(r) (r) E 2
0
0
0
1
1
and
iB(r ) 0 J (r )
Physics BYU
1
iB 2 0 J
37
Electro-statics
1
(r) E0 (r) (r)
Convolution: E(r)
4p0 r
1
rˆ
E 0 (r )
4p0 r 2
1
where
for point charge.
r r'
1
rˆ
E(r )
r ' dt '
r ' dt '
3
2
4p0 | r r' |
4p0 r
1
1
1
(r' ) dt '
E(r ) V (r ) where V (r )
4p0 | r r' |
Physics BYU
38
Superposition of charges
• For n charges
V (ri )
1
4p0
{dq1, dq2, …, dqn }
n
dq j
j 1
ri j
1
4p0
n
dq j
j 1
i
|r r
j
|
• continuum limit:
1
dq'
V (r )
4p0 | r r ' |
• where
E(r ) V (r )
(r' ) d l '
dq ' (r' ) da'
(r' ) dt '
Physics BYU
39
• linear uniform charge density (x’) from –L to L
• field point @ x = 0, z variable
z
dq ' dx'
r z k x' i
r x' z z sec
x' z tan
2
|
-L
|L x
dq’
E(r )
1
4p0
L
L
r
r
3
2
dx'
Physics BYU
40
with
dx' z sec 2 d ,
0 2
ˆ
2 k z sec 2
1 2 kˆ
E(r)
d
sin 0
3
3
4p0 0 z sec
4p0 z
so
• Limits:
2
E(r )
4p0 z
1
L
L2 z 2
kˆ .
1
ˆ
s
L
2p0 s
E(r )
q 1
rˆ z , L fixed
2
4p0 r
Physics BYU
41
Gauss’s law
ΦE E da
• Flux of E through a surface S:
S
volume V enclosed by surface S.
• Flux through the closed surface:
1
E da
S
Qenc
0
1
dt
0 V
• choose a “Gaussian surface” (symmetric case)
E Area(G.S .)
1
0
Qenc
ˆ determined by symmetry
E
Physics BYU
42
Examples:
• Charged sphere (uniform density) radius R
A 4p r 2
Gaussian surface:
3
r
a) r < R:
Q (r' )dt ' Q
enc
R
Vol ( r )
Q
r
E(r )
rˆ
3
4p0 R
3
for r R
rˆ
E(r )
4p0 r 2
Q
b) r > R: Qenc Q
as if all Q is concentrated @ origin
Physics BYU
for r R
43
• Thin wire: linear uniform density (C/m)
Gaussian surface: cylinder
A 2p sl
Qenc l
l
sˆ
E (2p sl )
E(s)
0
2p 0 s
• Plane: surface uniform density (C/m2)
Gaussian surface: “pill box” straddling plane
A
ˆ
E (2 A)
E
k
0
2 0
CONSTANT, pointing AWAY from surface (both
sides)
Physics BYU
44
Boundary conditions for E
• Gaussian box w/ small area D A // surface w/
charge density
1
with n pointing away from 1
nˆ E
2
• Equivalently:
E 1 E 2 nˆ
0
• Component parallel to surface is continuous
• Discontinuity for perp. component = /0
Physics BYU
45
Electric Potential (V = J/C)
• Voltage
1
1
1
dq'
V (r ) V0 (r ) * (r )
(r ' )dt '
4p0 r
4p0 r
solves Poisson’s equation:
V (r )
2
1
(r )
0
• point charge Q at the origin (r ) Q (r )
1 Q
V (r )
4p0 r
Physics BYU
46
Potential Difference (voltage)
r
• in terms of E:
Edl 0
V (r) V (a) E d l
and
a
• Spherical symmetry: V = V (r)
dV (r )
E(r )
rˆ
dr
where r r
• Potential energy: U = q V (joules)
• Equi-potential surfaces: perpendicular to field
lines
Physics BYU
47
• Example: spherical shell
radius R, uniform surface charge density
Gauss’s law E(r) = 0 inside (r < R)
For r > R:
1
q
E(r )
rˆ
2
4p0 r
r
wher e q 4p R
2
1
and
r
q
1 q
V (r ) E d l
dr
2
4p0 r
4p0 r
Physics BYU
48
• Example: infinite straight wire,
uniform line charge density
Gauss’s law:
E(r )
r
2p0 s
V (r ) E d l
a
1
1
2p0
Physics BYU
sˆ
s
a
and
a
ds
ln
s
2p0 s
49
Electric-Magnetic materials
• conductors
– surface charge
– boundary conditions
– 2nd order PDE for V (Laplace)
• dielectrics
– auxiliary field D (electric displacement field)
• non-linear electric media
• magnets
– auxiliary field H
• ferromagnets
– non-linear magnetic media
Physics BYU
50
Perfect conductors
•
•
•
•
•
•
•
•
Charge free to move with no resistance
E = 0 INSIDE the conductor
= 0 inside the conductor
NET charge resides entirely on the surface
The conductor surface is an EQUIPOTENTIAL
E perpendicular to surface just OUTSIDE
E = /0 locally
Irregularly shaped is GREATEST where
the curvature radius is SMALLEST
Physics BYU
51
Induced charge
• Charge held close to a conductor will induce
charge displacement due to the attraction
(repulsion) of the inducing charge and the
mobile charges in the conductor
Example: find charge distribution
1. Inner: conducting sphere,
radius a, net charge 2 Q
2. Outer: conducting thick
shell b < r < c, net charge -Q
Physics BYU
52
Work and Energy
W Q E d l Q [V (b) V (a)] Q DV
b
• Work:
a
• for n interacting charges:
1 1 n qi q j 1 n
W
qiV (ri )
4p0 2 i j ri j
2 i
• continuous distribution
0
0
1
W Vdt ( E) Vdt
2
2
2
• Energy density:
also electric PRESSURE
Physics BYU
E dt V E da
2
u (r )
0
2
E 2 (r )
53
Capacitors (vacuum)
• Capacitor: charge +Q and –Q on each plate
- - - - - d
E
++++++
Q
d
E
, so DV E d Q
0 A 0
A 0
• define capacitance C :
with units 1F = 1C /1V
Physics BYU
Q = C DV
C
0 A
d
54
• charging a capacitor C: move dq at a given
time from one plate to the other adding to the
q already accumulated
2
2
q
1Q
CV
dW dq
W
C
2 C
2
• in terms of the field E
1 A
1
2
2
W 0 ( Ed ) 0 E (Vol)
2 d
2
u (r )
0
2
2
E (r )
Physics BYU
energy density
55
Laplace’s equation
• V at a boundary (instead of )
V 0
2
one dimension:
capacitor
d 2V
0
2
dx
V0 V1
V1 V0
V ( x)
x V0
d
V ( x) mx b
(0 to d)
from
0d
V(x) is the AVERAGE VALUE of V(x-a) and V(x+a)
Physics BYU
56
• Harmonic function has NO maxima or minima
inside. All extrema at the BOUNDARY
• Average value (for a sphere):
1
V0 V (r 0)
V (r )da
Area
Proof:
2
Vdt (V )dt (V ) da
V
2 d
R
d R
Vd 0
r
dR
Vd V0 4p for R 0
2
2
Vda
V
4
p
R
0
for finite R
Physics BYU
57
Method of images
• Problem: find V for a point charge q facing an
infinite conducting plane
q
equivalent to
potential:
r
q
-q
charge density:
1 q q
V (r)
4p0 r1 r2
V
0
n
Physics BYU
plane
58
Laplace’s equation in 2-d
Complex variable z = x + iy w’(z) well defined
w
w
dx
dy w
x
dw( z ) x
y
w
dz
dx idy
i
y
for dy 0
for dx 0
2
2
2 2 w( x iy ) 0
x y
both real and imaginary parts of w fulfill
Laplace’s equation
Physics BYU
59
Examples and equipotentials in 2-d
•
w(z) = z
equipotential lines:
V(x, y) = y
y = a (const)
•
w(z) = z2
e. l.:
V(x, y) = 2xy, or x2 - y 2
xy = a (hyperbolae)
•
w(z) = ln z
e. l.:
V(s, ) = ln s, arctan(y/x)
s = exp(a)
•
w(z) = 1/z = exp(-i /s
V(s, ) = cos /s
e. l.:
s = cos /a
(circles O)
Physics BYU
60
z 1/ 2
• w( z ) ln
z 1/ 2
• w(z) = z + 1/z
e. l.:
V(x, y) = finite dipole
V(s, ) = (s – 1/s) sin
s = 1 for a = 0
• w(x) = exp(z)
V(x, y) = exp(x) cos y
Vk(x, y) = exp(k x) cos (k y) & exp(k x) sin (k y)
Physics BYU
61
Separation of variables (polar)
z s e
n
• Powers of z:
n
Vn ( s, ) S n ( s) n ( )
S n ( s) s
n
and
in
whe re
cos( n )
n ( )
sin( n )
1 V 1 2V
0
s
2
2
s s s s
• Solution of
V V0 a0 ln s (an s n bn s n )[cn cos( n ) d n sin( n )]
n 1
Physics BYU
62
Separation of variables (x, y)
• k 2 = separation constant V ( x, y ) X ( x)Y ( y )
1 2
1 d 2 X 1 d 2Y
2
2
V
k
k
0
2
2
V
X dx
Y dy
• Eigenvalue equation for X and Y
2
2
d X ( x)
d Y ( y)
2
2
k X ( x)
&
k Y ( y )
2
2
dx
dy
• Construct linear combination, determine
coefficients w/ B.C. using orthogonality
Physics BYU
63
• Example: i) V ( x 0) V0 ii) V ( x ) 0
iii) V ( y 0) 0
iv) V ( y p ) 0
solution:
X k ( x) A e kx B e kx
Yk ( y) C sin( ky) D cos(ky)
B.C.: ii) A = 0;
iii) D = 0;
iv) quantization k = 1, 2, 3, …
V ( x, y) Cn e
nx
sin( nx)
n 1
Physics BYU
64
• orthonormality:
p
p
sin( ny) sin( my)dy 2
nm
0
i)
40V m even
Cm V0 sin( my)dy 0
m odd
p 0
mp
solution:
2
p
4V0
odd
1 nx
V ( x, y )
e sin( ny )
p n 1 n
Physics BYU
65
Separation of variables - spherical
• Assume axial symmetry, i.e. no dependence
1 2
1
2
r
2
sin
r r r r sin
2
separation constant l (l +1)
V (r , ) R(r ) ( )
d 2 dR(r )
r
l (l 1) R(r )
dr
dr
1 d
d ( )
sin
l (l 1)( )
sin d
d
Physics BYU
66
Legendre polynomials
• change of variable
( ) Pl ( ) Pl (cos )
d
d
2 d Pl ( )
(1 ) d l (l 1) Pl ( ) 0
• orthogonality
1
2
1 Pl ( ) Pm ( ) d 2l 1 l m
• “normalization”
Pl (1) = 1
Physics BYU
67
• Radial function
R(r) = r l or r – l – 1
Bl
l
V (r , ) Al r l 1 Pl (cos )
r
l 0
A0 A1r cos ... A0 A1 z ...
B0 B1
2 cos ...
r r
Physics BYU
68
• Given V0( ) on the surface of a hollow sphere
(radius R), find V(r)
• Soln: Bl = 0 for r < R, and Al = 0 for r > R
B.C. @ r = R:
l
A
R
Pl (cos )
l
l 0
V0 ( )
Bl R l 1 Pl (cos )
l 0
using orthogonality:
p
2l 1
Al
V ( ) Pl (cos ) sin d
rR
l 0
2R 0
p
2l 1 l 1
Bl
R V0 ( ) Pl (cos ) sin d
rR
2
0
Physics BYU
69
• Uncharged conducting sphere in uniform
electric field E = E0 k
B0
B1
V ( A0 ) ( A1r 2 ) cos ...
r
r
Bl
l
2 l 1
A
R
0
B
A
R
V(r = R) = 0:
l
l
l
l 1
R
V -E0 r cos r >> R:
A0 B0 0
B1 A1 R 3
A1 E0
3
R
V (r ) E0 r 2 cos
r
Physics BYU
70
V
( ) 0
r
3 0 E0 cos
r R
Physics BYU
71
Electric Dipole
• finite dipole
q 1 1
V (r )
4p0 r r
1
1
s
1 cos
as r
r
r 2r
1 1
s
and
2 cos
r r
r
qs 1
+q
V (r )
cos
2
4p0 r
r+
r
s
r-q
p = qs is the dipole moment for a finite dipole
Physics BYU
72
Multipole expansion
• Legendre polynomials: coefficients of 1/ r
expansion in powers of r ' / r 1
r r r' r r ' 2 r r' r 1
2
2
where 2 2 cos
and
1
3 2
1 / 2
(1 )
1 ...
2
8
2
3
cos
1
2
...
1 cos
2
Physics BYU
73
• Multipole expansion of V:
using
1
1 r'
1 rˆ r '
Pl (cos ' ) 2 ...
r l 0 r r
r r
1
1
l
V (r )
r ' Pl (cos ' ) dq'
l 1
4p0 l 0 r
l
1 Q p rˆ
V (r)
2 ...
4p0 r
r
Q dq'
and
Physics BYU
with
p r ' dq'
74
Electric field of a dipole
• Choosing p along the z axis
1 p rˆ
1 pz
Vdip (r )
2
4p0 r
4p0 r 3
1
z
and Edip (r) Vdip (r)
p 3
4p0
r
1 1
E dip (r )
[3(p rˆ )rˆ p]
3
4p0 r
Clifford form:
1
1
E dip (r )
(3 rˆprˆ p)
3
4p0 2r
Physics BYU
75
Polarization
• P(r) polarization, vector field =
= dipole moment/volume.
1
(r ' )
Compare:
Vch dist (r )
dt '
4p0
r
w/ potential due to dipole distribution:
rˆ P(r ' )
V pol (r )
dt '
2
4p0
r
1
Physics BYU
76
Equivalent “bound charges”
• Integration by parts:
P(r ' )
1 1
'
P(r ' ) ' 'P(r ' )
r
r r
rˆ P(r ' ) 1
P
2
r
r
so that:
1
1
1
1
V pol (r )
b (r ' )dt '
b (r ' )da'
4p 0 r
4p 0 r
Physics BYU
77
where
and
b P and b nˆ P
P 0 only if P is not uniform
• surface charge:
-• In a dielectric charge does not migrate.
It gets polarized.
Physics BYU
+
78
Electric Displacement field D(r)
• Total charge density: free plus bound
(r ) f (r ) b (r ) f (r ) P
• Defining
we get:
D(r) 0E(r) P(r)
D f
• Gauss’s law for D:
and
E 0
D da Q
Physics BYU
f enc
79
• Example: Find the electric field E produced
by a uniformly polarized sphere of radius R
1
rˆ
V (r)
P 2 dt '
4p0 sph r
where
and
rˆ
4p
sph r 2 dt ' 3
r
3
2
ˆ
R r / r
1
P
E V 3 0
dipole field
Physics BYU
rR
rR
80
• Example of Gauss’s law for D:
Long straight wire, uniform line charge ,
surrounded by insulation radius a. Find D.
D(2p sh ) h
D
sˆ
2p s
Outer region, we can calculate the electric
field:
1
P0 E D
sˆ for s a
0
2p 0 s
Physics BYU
81
Linear Dielectrics
• D, E, and P are proportional to each other for
linear materials
0
k
ce
/ 0
k1
permittivity space
permittivity material
dielectric constant
susceptibility
D E k 0E
C k C0
P D 0E ( 0 )E 0 c e E
Physics BYU
82
• Theorem:
In a linear dielectric material with constant
susceptibility the bound charge distribution is
proportional to the free charge distribution.
ce
D
b P 0 c e
f
1 ce
Physics BYU
83
Boundary conditions
• Boundary between two linear dielectrics
1 n D f and E 0
2
Boundary
conditions:
E D / 1 in 1, and E D / 2 in 2
D D f n̂
1
2
V
V
1
2
n 1
n
Physics BYU
f
2
84
• Example: Homogeneous dielectric sphere,
radius R in uniform external electric field E0
• Solution:
1
b f 0 E sph
P
3 0
in terms of the unknown P.
Total field: E E sph E 0 and polarization:
eliminating P:
P (k 1) 0E
Ε
3
E
E0
k 2
k 1
and P 3 0
E0
k 2
Physics BYU
85
Energy in dielectrics
• vacuum energy density: u (r ) 1 ( E) E
0
2
• dielectric: u (r ) 1 D E
2
• Energy stored in dielectric system:
1
W D E dt
2
• energy stored in capacitor:
1
k
2
2
W CV C0V
2
2
Physics BYU
86
Fringing field in capacitors
l
F
for fixed charge Q:
x
dW
1 2 d 1 1 2 dC
V
F
Q
dx
2
dx C ( x) 2
dx
where
so
0w
w
C ( x) [ 0 x (l x)]
(k l c e x)
d
d
F
0 wc e
2d
V2 0
Physics BYU
87
Magnetostatics
duality in Clifford space
•
•
•
•
•
•
•
Electric
Field lines: from + to E(r): vector field
pos. &neg. charge
(r): scalar source
V (r): scalar potential
units [E] = V/m
E
1
0
•
•
•
•
•
•
•
Magnetic
Field lines: closed
i B: bivector field
no magnetic monopoles
J(r): vector source
A (r): vector potential
units [B] = Vs/m2
iB 0 J
Physics BYU
88
Lorentz force
• Point charge q in an external magnetic field B
F qv B
• velocity dependent (but no-friction)
• perpendicular to motion: no work done
v
F d l q ( v B) v d t 0
Example: uniform magnetic field B
define cyclotron (angular)
qB
frequency:
m
Physics BYU
89
equation of motion:
v nˆ v where
solution:
B
nˆ
B
v(t ) exp( t nˆ ) v(0)
v // (0) cos( t ) v (0) sin( t ) nˆ v (0)
with
v (t ) 2 v (0) 2 const .
2
and radius:
v
qv B m
R
Physics BYU
so R
v
90
Add uniform electric field E perpendicular to B:
qE
F q (E v B )
v nˆ v
m
a particular solution is given by:
En
v(t )
given that
En 0
B
and
E B
v(t ) exp( t nˆ ) v(0) 2
B
Applications:
• cyclotron motion
• velocity selector
Physics BYU
91
Physics BYU
92
Charge current densities
dq
I
dt
• current
[ I ] = Amp = C/s
flow of charge per unit time
2
J
v
volume
(A/m
)
• current density
qv K v surface (A/m)
v
wire
(A)
J B dt
F v B dq K B da
Ι B dl
• magnetic force
Physics BYU
93
• Relation between I and J
• a) consider cylinder, radius R, with uniform
steady current I
I
J
p R2
• b) for I k s
2p 3
I J da (ks)sdsd 2p ks ds
kR
3
0
R
2
Physics BYU
94
Charge conservation
• current across any closed surface
d
I J da J dt dt
dt
• local (differential) form:
J 0
u
• steady currents:
J 0
Physics BYU
95
Solving Magnetostatic Equation
• Two Maxwell equations rewritten as
B i0 J
formally solved as:
1
1
1
B i 0 2 J i 0 2 i J 0 2
B A
Explicitly:
0
A(r )
4p
where
1
A 0 2 J
1
0
J (r )
r
4p
Physics BYU
J
1
J (r ') dt '
r
96
Using
J (r ')
1 J (r ') rˆ
J (r ')
2
r
r
r
the magnetic field is given in terms of the
vector source as:
0 J (r ') rˆ
0 J (r ') (r r ')
B(r )
dt '
dt '
2
3
4p
r
4p
|r r'|
For current on a wire (Biot-Savart expression):
0 I(r ') rˆ
0 I d l ' rˆ
B(r )
dl '
2
4p
r
4p r 2
Physics BYU
97
Calculate the magnetic field due to a uniform
steady current I
Trig:
1 sin 2
sd
z ' s cot
I
in
s
r
2
s
2
dz '
sin 2
Biot-Savart:
d l ' rˆ dz 'sin ˆ
0 I d l ' rˆ 0 I sin 2 sd
ˆ
dB
dl’
2 2 sin
2
4p r
4p s sin
0 I sin
dB
d ˆ
4p s
p
0 I ˆ
0 I ˆ
Integration:
B(r)
sin d
4p s 0
2p s
Physics BYU
98
Force between two // currents
I2
I1
f
a
in
at wire 2:
I 2 B1
0 I1
B1
2p a
F12 I 2 B1l
attractive force per unit length:
F12 0 I1 I 2
f
( sˆ2 )
l
2p a
Physics BYU
99
Ampere’s Law
• using Stokes’ theorem
(
B
)
d
a
B
dl
S
S
Bdl I
we get
over “Amperian loop”.
Symmetric case:
0 enc
B L 0 I enc 0
J da
surf
Physics BYU
100
Applications of Ampere’s law
B tangent to Amperian loop
BL 0 I
where L 2p s
0 I ˆ
B
2p s
Current in x direction
K Kiˆ so B(2l ) 0 0 Kl
B (sgn z )
Physics BYU
0
2
K ˆj
101
• Solenoid:
•
•
•
•
n turns/length
current I, K nIˆ
magnetic field in z direction
Outer loop: B(a) B(b) 0
Straddling loop: BL 0 nIL
B nI kˆ inside; B 0 outside
0
• Torus:
Amperian loop inside the torus
N = TOTAL number of turns
B(2p s) 0 I B 0 N I ˆ inside; B 0 outside
2p s
Physics BYU
102
Vector Potential A
• Poisson equation:
• Solution:
2 A 0 J
0 J (r ')
A(r )
dt '
4p
r
• Disadvantages:
integral diverges
it is a vector field (not scalar)
• Advantage: dA dJ in the same direction
Physics BYU
103
Examples:
• Long thin wire with current I
0 I
A
4p
L
L
0 I
dz '
2 ln( z z 2 s 2 )
z '2 s 2 4p
0
0 I
2L
2 ln
4p
s
L
so
0 I s ˆ
0 I ˆ
A(r)
ln k and B(r)
2p s0
2p s
Physics BYU
104
• Example: Find the vector field corresponding
to a uniform magnetic field.
• Using Stokes’ theorem:
A d l ( A) da B da magnetic2 flux
A(2p s) B(p s )
• Amperian loop FOR A
1
1 ˆ
1
ˆ
A(r ) Bs B(k s) B r
2
2
2
• For a solenoid
B 0 nI inside, and
2
1 ˆ s 0 nI ˆ s
A(r) B 2
2
2s
2
a / s
a
Physics BYU
105
Boundary conditions for B
• Integrating Maxwell’s equation for B
B i 0 J
1
ˆ 2 i 0 K
nB
1
2
or, equivalently B1 B2 i0nK
ˆ 0K nˆ
• B is CONTINUOUS
//
//
B
B
while
1
2 0 K
Physics BYU
106
Multipole expansion: magnetic moment
• Applying the expansion
1
1 r'
1 rˆ r '
Pl (cos ' ) 2 ...
r l 0 r r
r r
to the vector potential for a CLOSED loop:
l
0 I 1
A(r )
dl '
4p
r
0 I 1
1
d l ' 2 rˆ r ' d l ' ...
4p r
r
Physics BYU
107
• The dipole term is:
0 I 1
A dipole (r )
4p r 2
(rˆ r ')d l '
• Using the fundamental theorem in 2-d
i da d l, (r) C r a scalar field
S
S
(kˆ r ) kˆ and ' (r ') '(rˆ r ') rˆ
Physics BYU
108
• Finally:
m
Area
(rˆ r ')d l ' i d a ' rˆ d a ' rˆ
0 m rˆ
A dipole (r )
2
4p r
where the magnetic dipole moment is:
m I da I Area
Curl:
mr 1
3
3 3 (m r ) 4 rˆ (m r )
r
r r
Physics BYU
109
Magnetic field for a dipole
0 1
B A
[3(m rˆ ) rˆ m]
3
4p r
compared to the electric dipole field:
1
1
E
[3(p rˆ ) rˆ p]
3
4p 0 r
Physics BYU
110
Magnetism in Matter
• Paramagnets
• Diamagnets
• Ferromagnets
M // B
M // -B
nonlinear - permanent M
Dipoles
p qs
mIa
F 0 uniform Ε
F 0 uniform B
N pΕ
torque
N mB
torque
W p Ε
W m B
F (p Ε) point dipole F (m B) point dipole
Physics BYU
111
Atomic diamagnetism
B
add B
-e
ev
I
2p a
ev
2ˆ
m
pa k
2p a
m0 v 2
Fcent
a
Energy:
-e
m
m0v
2m0
DF D
v Dv evB
a
a
eBa
Dv
2m0
2 2
e ˆ
ea
Dm a k Dv
B
2
4m0
2
eva
e
ˆ B
W m B
m
LB
2m0
Physics BYU 2
112
Magnetization
• Magnetization = (dipole moment)/volume
• Vector potential: d A ' 0 d m(r ') rˆ
2
4p
r
0
0
rˆ
1
A(r )
M (r ') 2 dt '
M (r ') ' dt '
4p
r
4p
r
0 ' M (r ') 0 M (r ') d a '
A(r )
4p
r
4p
r
0 J b (r ') 0 K b (r ')d a '
4p
r
4p
r
Physics BYU
113
Sphere - constant magnetization
• sphere radius R - uniform M
r inside
0
0
rˆ
3
A(r )
M 2 dt '
MR
4p
r
3
2 rˆ outside
r
2
0 M inside
B A
3
(dipole @ center) outside
with magnetic moment
Physics BYU
4
3
m pR M
3
114
A useful integral over the sphere
I 0 (r )
sph
rˆ
dt '
2
r
corresponds to electric
field w/ constant density:
4p 0
using Gauss’s law:
r inside
4p 3
I 0 (r )
R
3 2 rˆ outside
r
Applications: constant charge density,
polarization, and magnetization
Physics BYU
115
• Bound current densities:
J b (r) M(r)
and
K b (r) M(r) nˆ
• Auxiliary field H
1
0
B J J f J b J f M
• Defining
H
1
0
BM
we get
Physics BYU
H J f
116
• An equivalent problem: sphere with uniform
surface charge spinning with constant
angular velocity .
Tangential velocity & surface current
v ωs ωR
R
K v ωR
equivalent to uniform M w/bound Kb
K b M rˆ , so M R
2
B 0 R ω inside spinning sphere
3
Physics BYU
117
• Ampere’s law for magnetic materials
H d l I f enc
• Experimentally: I & V H & E
Example: copper rod of radius R carrying a
uniform free current I
p s 2 / p R 2 inside
Amperian loop H (2p s) I
1 outside
radius s:
0 I ˆ
outside M = 0 and B 0 H
(s R)
2p s
Physics BYU
118
Boundary conditions for B & H
• Integrating Maxwell’s equations:
H J f
B 0
nˆ H 2 K f
nˆ B 2 0
1
1
or, equivalently
H1// H2// K f nˆ
Physics BYU
and B1 B2
119
Linear Magnetic Materials
• Susceptibility and permeability:
M cm H
and B 0 (H M) H
0 1 c m
magnetic permeability
BH
• diamagnetic
paramagnetic
Gadolinium
~ -10-5
~ +10-5
~ +0.5
Physics BYU
120
• Theorem:
In a linear homogeneous magnetic material
(constant susceptibility) the volume bound
current density is proportional to the free
current density :
J b M ( c m H ) c m J f
Bound surface current:
K b M nˆ c m H nˆ
example: solenoid
K b cm n I ˆ
Physics BYU
121
Ferromagnetism
• Permanent magnetization (no external field
necessary)
• non-linear relation between M and I
• hysteresis loop
• dipole orientation in DOMAINS
• magnetic domain walls disappear with
increasing magnetization
• phase transition (Curie point): iron T ~ 770 C
Physics BYU
122