Download Trigonometry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometry
Massoud Malek
Right-Angled Triangle
The sine of an angle is the ratio of the length of the opposite side to the length of the
hypotenuse.
opposite
a
sin A =
= .
hypothenuse
h
The cosine of an angle is the ratio of the length of the adjacent side to the length of the
hypotenuse.
adjacent
b
cos A =
= .
hypothenuse
h
The tangent of an angle is the ratio of the length of the opposite side to the length of the
adjacent side .
a
opposite
tan A =
= .
adjacent
b
Reciprocal Trigonometric functions.
The remaining three functions are best defined using the above three functions.
The cosecant is the reciprocal of sine:
csc A =
hypothenuse
h
= .
opposite
a
Massoud Malek
Trigonometry
The secant is the reciprocal of cosine:
csc A =
hypothenuse
h
= .
adjacent
b
The cotangent reciprocal of tangent:
cot A =
adjacent
b
= .
opposite
a
Unit Circle.
A unit circle is a circle of radius one centered at the origin (0, 0).
2
Massoud Malek
Trigonometry
3
Massoud Malek
Trigonometry
4
x2 + y 2 = 1 =⇒ sin2 θ + cos2 θ = 1
By dividing both sides of the above identity by cos2 θ and sin2 θ respectively, we obtain:
sin2 θ cos2 θ
1
+
=
=⇒ tan2 θ + 1 = sec2 θ
2
2
cos θ cos θ
cos2 θ
1
sin2 θ cos2 θ
+
=
=⇒ 1 + cot2 θ = csc2 θ
2
2
2
sin θ sin θ
sin θ
Here are some other identities:
sin(a ± b) = sin a cos b ± sin b cos a
tan(a ± b) =
tan a ± tan b
1 ∓ tan a tan b
cos(a ± b) = cos a cos b ∓ sin a sin b
cot(a ± b) =
1 ± cot a cot b
cot a ∓ cot b
cos(a + b) + cos(a − b)
cos(a − b) − cos(a + b)
sin a sin b =
2
2
sin(a + b) + sin(a − b)
sin 2a
sin a cos b =
sin a cos a =
2
2
1 − cos 2a
1 + cos 2a
sin2 a =
cos2 a =
2
2
cos a cos b =
Limits.
sin x
=1
x→0 x
lim
sin x
=0
x→∞ x
lim
Massoud Malek
Trigonometry
5
Mac Lauren Series.
∞
X
x2n+1
sin x =
(−1)n
2n + 1
n=0
∞
X
x2n
cos x =
(−1)n
2n
n=0
Complex forms
sinx =
ei x − e−i x
2i
cos x =
ei x + e−i x
2
de Moivre’s formula.
(cos x + i sin x)n = cos n x + i sin n x
Laws of Sines and Cosines
Let T = (a, b, c; A, B, C) be a triangle , where a, b, c are the sides and A, B, C are the
angles. Then T satisfies the following conditions:
sin A
sin B
sin C
=
=
a
b
c
Law of Sines :
Law of Cosines : c2 = a2 + b2 − 2 a b cos C
Derivatives and Integrals.
R
f (x)
sin x
cos x
tan x
cot x
sec x
csc x
f 0 (x)
cos x
− sin x
sec2 x
− csc2 x
sec x tan x
− csc x cot x
f (x)dx − cos x
sin x
ln | sec x| ln | sin x| ln | sec x+tan x| ln | csc x−cot x|
Inverse Trigonometric Functions.
Let f (x) = sin x, then the inverse function
f −1 (x) = arcsin x = sin−1 x
is called the arcsine of x . If f (x) is a one to one function in a domain, then f −1 (x) is
also a function. Thus
sin(arcsin x) = x f or x ∈ [−1, 1]
Massoud Malek
Trigonometry
6
and
arcsin (sin x) = x
x ∈ [−π/2, π/2].
whenever
Similarly we may define arccos x = cos−1 x, arctan x, etc...
f (x)
sin−1 x
cos−1 x
tan−1 x
cot−1 x
sec−1 x
csc−1 x
Domain
[−1, 1]
[−1, 1]
(−∞, ∞)
(−∞, ∞)
|x| ≥ 1
|x| ≥ 1
π
2
(0, π)
[0, π] − { π2 }
1
1 + x2
−1
1 + x2
1
x x2 − 1
Range
f 0 (x)
|x| ≤
√
π
2
[0, π]
−1
√
1 − x2
1
1 − x2
|x| ≤
√
|x| ≤
π
2
−1
x x2 − 1
√
To integrate inverse trigonometric functions, we use integration by parts with v(x) = 1.
Z
Z
sin−1 x dx = x sin−1 x +
cos−1 x dx = x cos−1 x −
√
1 − x2 + C
√
1 − x2 + C
Z
tan−1 x dx = x tan−1 x −
1
ln(1 + x2 ) + C
2
Z
cot−1 x dx = x cot−1 x +
1
ln(1 + x2 ) + C
2
Z
Z
sec−1 x dx = x sec−1 x − ln |x +
csc−1 x dx = x csc−1 x + ln |x +
√
x2 − 1| + C
√
1 − x2 + C
Massoud Malek
Trigonometry
7
Identities.
sin−1 x + cos−1 x =
π
,
2
π
,
2
1
−1
−1
sin x = csc
,
x
sec−1 x + csc−1 x =
sec
−1
−1
x = cos
1
,
x
cos(sin−1 x) = sin(cos−1 x) =
sin−1 x = − sin−1 x
√
f or
|x| ≤ 1.
f or
|x| ≥ 1.
f or
|x| ≤ 1.
f or
|x| ≥ 1.
1 − x2
sec(tan−1 x) =
cos−1 x = π − cos−1 x
The following table is obtained from the unit circle:
√
x2 + 1
tan−1 x = − tan−1 x
Massoud Malek
Trigonometry
8
x
sin x
cos x
tan x
cot x
sec x
csc x
0
0
1
0
±∞
1
±∞
π/6
1/2
√
3/2
3/3
√
3
√
2 3/3
2
√
√
π/4
π/3
√
√
2/2
√
2/2
3/2
1/2
√
1
1
√
√
3/3
2
√
2 3/3
3
2
2
π/2
1
0
±∞
0
+∞
1
−x
− sin x
cos x
− tan x
− cot x
sec x
− csc x
π/2 − x
cos x
sin x
cot x
tan x
csc x
sec x
π/2 + x
cos x
− sin x
− cot x
− tan x
− csc x
sec x
π−x
sin x
− cos x − tan x
− cot x
− sec x
csc x
π+x
− sin x − cos x
tan x
cot x
− sec x − csc x
Massoud Malek
Trigonometry
9
The following table shows how trigonometric functions are related to each other.
f (x)
sin x
sin x
sin x
p
cos x
1−sin2 x
cos x
tan x
cot x
√
tan x
1
√
1−cos2 x √
2
1 + tan x
1 + cot2 x
cos x
√
1
1+tan2 x
√
sec x
csc x
sec2 x − 1
sec x
1
csc x
cot x
1
sec x
√
1+cot2 x
√
1−cos2 x
tan x p
cos x
1−sin2 x
tan x
1
cot x
√
p
1−sin2 x
cos x
√
cot x
sin x
1−cos2 x
1
tan x
cot x
√
p
1+tan2 x
cot x
√
1+cot2 x
sin x
1
sec x p
1−sin2 x
csc x
1
sin x
1
cos x
1
√
1−cos2 x
√
1+tan2 x
tan x
p
1+cot2 x
√
√
csc2 x−1
csc x
1
csc2 x−1
sec2 x−1
√
1
sec2 x−1
√
sec x
√
sec x
sec2 x−1
csc2 x−1
csc x
csc2 x−1
csc x
Related documents