Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
NAME
DATE
PERIOD
NAME
Skills Practice
Solving Compound and Absolute Value Inequafities
1. all numbers greater than or equal to 2
or less than or equal to -2 I n| _> 2
2. all numbers less than 5 and greater
than-5 1.1 <5
2
3
3. all numbers less than -1 or greater
than1 lnl > 1
4. all numbers between -6 and 6 [ n[ < 6
-10
0
10
20
-4-3-2-1 0
1
2
3
4
Solve each inequality. Graph the solution set on a number line.
5. -8 --< 3y - 20 < 52 {yl 4 -< y < 24} 6. 3(5x - 2) < 24 or 6x - 4 > 4 + 5x
’, ’, ’, ~=:~-=z
I I I. [nl <1 6.--~ : I I : ’, : ’, **-4-3-2-1 0 1
2 3 4
-4-3-2-1 0
1
-20
-8-6-4-20 2 4 6 8
Write an absolute value inequality for each graph.
-4-3-2-1 0
-4-3-2-101234
Write an absolute value inequality for each graph.
3.
-4-3-2-10 1 2 3 4
5.:
1. all numbers greater than 4 or less than -4 ] n[ > 4
-8-6-4-202468
-8-6-4-20 2 4 6 8
4
Solving Compound and Absolute Value Inequafities
Write an absolute value inequality for each of the following. Then graph the
solution set on a number line.
2. all numbers between 1.5 and 1.5, including
- 1.5 and 1.5 I t~ I <--~ .5
= ’, ’,.:-.4--J---4-.--~-;.:~’, I ¯
1
PERIOD
Practice (Average)
Write an absolute value inequality for each of the following. Then graph the
solution set on a number line.
-4-3-2-1 0
DATE
2
3
1
2
34
0 4 8121620242832
7. 2~ - 3 > 15 or 3 - 7x < 17
4
-4-3-2-10 1 2 3 4
-20 2 4 6 8101214 orx>8}
{xl x > -2} 8.15 - 5x _< 0 a~d 5x + 6 -> -14 {xl x -> 3}
-4-3-2-10 1 2 3 4
-4-3-2-101234
Solve each inequality. Graph the solution set on a number line.
¯
I
9.2c+1>5orc<0{C C>2
9. I~,w[ -> 5 wlw<---~orw>-
I
10.-11-<4y-3-<1 {y --2_<y_< 1}
-4-3-2-10 1 2 3 4
-4-3-2-1 0 1
-4-3-2-10 1 2 3 4
11.
> 5 {x1-2 < x < -1}
12. 4a -> -8 or a < -3 {al a --> --2
-4-3-2-101234
13.8 < 3x + 2 -< 23 {x12 < x_< 7}
-4-3-2-10 1 2 3 4
-4-3-2-10 1 2 3 4
16. I~1 ->~ {tl t--< -3 or t-> 3}
-;-L-,J. I I I I I J---L~
~ I < 12 <x1-2 < x < 2}
-4-3-2-10 1 2 3 4
-4-3-2-10 1 2 3 4
1~. I-Trl > 14 {rlr< -2 or r> 2}
¯ I I 11 I I I I I,
19. I~ - 51 < ~ {n1-2 < n < 12}
-4-3-2-101234
20. Ih+ll >-5 {hlh-< -6 or h--> 4}
-4-2024681012
© Glencoe/McGraw-Hill
-8-6-4-20 2 4 6 8
33
810121416
14. Ixl
>x - 1 all real numbers
-4-3-2-101234
-4-3-2-1 0
1
1~. 13~ + 51 ~ -2 ~
16.,13~-21 - 2<1
2
3
4
ol I I I I I I I I.
-4-3-2-101234
-4-3-2-10 1 2 3 4
17. RAINFALL In 90% of the last 30 years, the rainfall at Shell Beach has varied no more
than 6.5 inches from its mean value of 24 inches. Write and solve an absolute value
inequality to describe the rainfall in the other 10% of the last 30 years.
I r- 241 > 6.5; {rl r < 17.5 or r > 30.5}
18. I~ + 21 ~ -2 ~
-4-3-2-101234
0246
13. 1~+21- ~-5 {x[-2 ~ x~ 0}
14. w - 4 -< 10 or -2w --< 6 all real
012345678
I~-
2 3 4
81->3 {xlx<_ 5 or x-> 11}
’, ’,
Glencoe Algebra 2
18. MANUFACTURING A company’s guidelines call for each can of soup produced not to vary
from its stated volume of 14.5 fluid ounces by more than 0.08 ounces. Write and solve an
absolute value inequality to describe acceptable can volumes.
Iv- 14.5[ --< 0.08; {v[14.42 --< v----- 14.58}
© Glencoe/McGraw-Hill
34
Glencoe Algebra 2
3