Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MTH 112 Final Exam Name ________________________________ You may write on this test, but be sure to mark all answers on the Scantron form. Turn in all scratch work paper with the test. 1. 2. 3. 4. Choose the equation shown in the graph. A. y= x − 3 B. = y x2 − 3 C. y= D. = y x3 − 3 x −3 E. None of these E. None of these E. None of these E. None of these Find the product and write in standard form: (7 + 9i )(3 − 8i ) A. − 51+ 83i B. 93 + 29i C. 64i D. 93 − 29i Write − 15 as a complex number in standard form. 2+i 15 − 15i 2 A. − 6 + 3i B. − C. − 6 − 15i D. 1 −6+ i 3 Solve the equation by factoring: 2 x 2 + 4 x = 9 x + 18 A. 9 2, − 2 B. 9 − 2, 2 C. 9 2 D. 23 18, 2 5. 6. 7. 8. 9. Use the square root method to solve the equation: ( x − 2) 2 = 18 A. {2 + 3 2 } C. {2 − 3 2, 2 + 3 2 } B. {5 − D. {− 16, 20} 2, 5 + 2 } E. None of these Use the quadratic formula to solve the equation: x 2 + 3 x − 1 = 0 A. {1, − 2} C. − 3 − 13 − 3 + 13 , 2 2 B. − 1 − 13 − 1 + 13 , 6 6 D. − 3 − 5 − 3 + 5 , 2 2 E. None of these Express the interval in set-builder notation: (− ∞, − 3] A. { x | x < −3} B. { x | x > −3} C. { x | x ≥ −3} D. { x | x ≤ −3} E. None of these E. None of these E. None of these Solve the inequality: 4 x + 3 > 5 x − 9 A. (12, ∞) B. (−12, ∞) C. (−∞, 12) D. (−∞, − 12) Find f (−2) : f ( x) = x 3 + 2 x 2 − 3 x + 4 A. 14 B. –6 C. 26 D. 10 10. Determine which of the following two graphs represent the graph of a function: Graph I 11. 12. 13. Graph II A. Only graph I B. Only graph II C. Both graphs I and II D. Neither graph I nor II E. None of these E. None of these Determine the interval on which the function is increasing. A. (− ∞, − 3) B. (1, 4) C. (3, ∞ ) D. (− 3, 3) Find the equation of a line with a slope of 4 and passing through the point (5, − 3) . A. y = 4 x + 17 B. y = 4 x + 23 C. y = 4 x − 17 D. y = 4x − 3 E. None of these E. None of these Determine the domain of the function: f ( x) = x − 6 A. (6, ∞) B. (−∞, 6) C. [6, ∞) D. (−∞, 6) (6, ∞) 14. 15. 16. 17. 18. 19. Find f − g for the given functions: f ( x) = 7 x + 9, g ( x) = 4 x − 1 A. 3 x 2 + 10 x B. 3 x + 10 C. 3x + 8 D. 3x 2 + 8 E. None of these E. None of these E. None of these Find ( f g )( x) for the given functions: f ( x) = 7 x + 9, g ( x) = 4 x − 1 A. 28 x + 2 B. 28 x + 35 C. 28 x + 8 D. 28 x + 16 Find the inverse function of f ( x ) = 3 x + 4 . A. f −1 ( x ) = 4 x + 3 B. C. x−4 f −1 ( x ) = 3 D. x−3 f −1 ( x ) = 4 x f −1 ( x ) = − 4 3 Divide the first polynomial by the second using long division: (9 x 3 − 6 x 2 − 8 x − 3) ÷ (3 x + 2) A. 8 7 3x 2 − x − 3 3x + 2 C. 3 x 2 − 4 x − 16 + 23 3x + 2 B. 3x 2 − 4 x − 2 + D. 3x 2 − 4 x − 7 3x + 2 3 3x + 2 E. None of these Divide the first polynomial by the second using synthetic division: (2 x 3 − 22 x − 40) ÷ ( x − 4) A. 2 x 2 + 14 x − 96 x−4 B. 2 x 2 − 8 x + 10 − C. 2 x 2 − 14 x − 96 x−4 D. 2 x 2 + 8 x + 10 80 x−4 E. None of these E. None of these Find all the zeros of the polynomial function: f ( x) = x 3 − 6 x 2 + 9 x − 4 A. {− 1, 1, 4} B. {1, 4} C. {− 1, − 4} D. {− 4, − 1, 1} 20. Which of the following is a graph of the function: f ( x) = A. B. C. D. E. 21. 22. x −1 x+2 None of these Solve the inequality: x 2 + 13 x ≤ 0 A. (−13, 0) B. (−∞, − 13] [0, ∞) C. (−∞, − 13) (0, ∞) D. [−13, 0] Change the logarithmic expression to exponential form: log 2 2 A. 1 = −3 8 C. 1 8 B. (−3) 2 = 1 8 D. (2) −3 = 1 8 −3 =2 E. None of these E. None of these 1 = −3 8 23. 24. 25. 26. 27. 28. Change the exponential expression to logarithmic form: 8=2 1 3 A. log 8 2 = 1 3 B. log 2 8 = C. log 8 3 = 1 3 D. log 8 2 = −3 Evaluate the logarithmic expression: log 3 3 E. None of these E. None of these E. None of these E. None of these 1 9 A. 3 B. 1 C. 1 2 D. −2 Expand the logarithmic expression as much as possible: log x2 y A. 2(log x + log y − log z ) B. z 2 log x + log y − 12 log z C. log(2 x + y − 12 z ) D. 2 log x − log y + 12 log z Rewrite the expression as a single logarithm: 2 ln x + ln z − 4 ln y A. x2z ln 4 y B. ln 2x y4z C. ln x2 y4z D. ln 2 xz 4y Use the change-of-base formula to evaluate the logarithm and round to three decimal places: log 5 20 A. 1.861 B. 1.301 C. 0.700 D. 0.537 E. None of these E. None of these Solve the equation: 2 2 x +1 = 32 A. 3 B. 2 C. –3 D. –2 29. 30. 31. 32. 33. Solve the equation: log 5 ( x + 1) = 2 A. 33 B. 31 C. 5 D. 24 E. None of these E. None of these E. None of these E. None of these E. None of these Solve the equation: log 2 x + log 2 ( x − 3) = 2 A. –1, 4 B. 4 C. 1 D. –4, 1 Solve the system of equations by the substitution method: A. ∅ B. {(2, 1)} C. {(0, − 1)} D. {( x, y ) | x= Solve the system of equations by the addition method: A. ∅ B. {(− 2, 1)} C. 10} {( x, y ) | 4 x − 3 y = D. {(1, − 2)} Solve the nonlinear system of equations: x= y − 2 2x − 2 y = −2 y − 2} 4x − 3 y = 10 2x + 3 y = −4 x+ y = 7 y =x 2 − 10 x + 25 A. {(6, 3)} B. {(−6, 13), (−3, 10)} C. {(6, 1), (3, 4)} D. {(−6, − 3)} MTH 112 Final Exam Key 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. B D A B C C D C D B D E C B A C D D B B D D A D B A A B D B A D C