Download Answer - Assignment Expert

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of statistics wikipedia , lookup

Inductive probability wikipedia , lookup

Probability interpretations wikipedia , lookup

Probability wikipedia , lookup

Transcript
Answer on Question #49980 โ€“ Math โ€“ Statistics and Probability
You are having three coins. First coin has two tails, second coin has two heads and the third one has one
head and one tail. You choose a coin at random and toss, and get tail. What is the probability that coin
chosen is two tailed coin?
(A) 1/2
(B)1/3
(C)2/3
(D)1/4
Solution
Method 1.
First coin has two tails (2 chances), second coin has two heads (0 chances) and the third one has one head
and one tail (1 chance). Totally we have 3 chances to get a tail from 6 possibilities.
If we get a tail, the probability, that coin chosen is two tailed, will be
๐‘ƒ=
๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘๐‘’๐‘  ๐‘ก๐‘œ ๐‘”๐‘’๐‘ก ๐‘Ž ๐‘ก๐‘Ž๐‘–๐‘™ ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘ค๐‘œ ๐‘ก๐‘Ž๐‘–๐‘™๐‘’๐‘‘ ๐‘๐‘œ๐‘–๐‘› 2
= .
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘๐‘’๐‘  ๐‘ก๐‘œ ๐‘”๐‘’๐‘ก ๐‘Ž ๐‘ก๐‘Ž๐‘–๐‘™
3
Method 2.
Hypotheses:
๐ป1 = "๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘๐‘œ๐‘–๐‘› ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘ค๐‘œ ๐‘ก๐‘Ž๐‘–๐‘™๐‘  ๐‘ค๐‘Ž๐‘  ๐‘โ„Ž๐‘œ๐‘ ๐‘’๐‘›",
๐ป2 = "๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ ๐‘๐‘œ๐‘–๐‘› ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘ค๐‘œ โ„Ž๐‘’๐‘Ž๐‘‘๐‘  ๐‘ค๐‘Ž๐‘  ๐‘โ„Ž๐‘œ๐‘ ๐‘’๐‘›",
๐ป3 = "๐‘กโ„Ž๐‘’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘๐‘œ๐‘–๐‘› ๐‘ค๐‘–๐‘กโ„Ž ๐‘œ๐‘›๐‘’ โ„Ž๐‘’๐‘Ž๐‘‘ ๐‘Ž๐‘›๐‘‘ ๐‘œ๐‘›๐‘’ ๐‘ก๐‘Ž๐‘–๐‘™ ๐‘ค๐‘Ž๐‘  ๐‘โ„Ž๐‘œ๐‘ ๐‘’๐‘›".
Event ๐ด = "๐‘‡๐‘œ ๐‘”๐‘’๐‘ก ๐‘Ž ๐‘ก๐‘Ž๐‘–๐‘™ ๐‘คโ„Ž๐‘’๐‘› ๐‘Ž ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š ๐‘๐‘œ๐‘–๐‘› ๐‘–๐‘  ๐‘ก๐‘œ๐‘ ๐‘ ๐‘’๐‘‘".
If we choose a coin at random, then ๐ป1 , ๐ป2 , ๐ป3 have equal probabilities, taking into account that
๐‘ƒ(๐ป1 ) + ๐‘ƒ(๐ป2 ) + ๐‘ƒ(๐ป3 ) = 1, we obtain that
1
๐‘ƒ(๐ป1 ) = ๐‘ƒ(๐ป2 ) = ๐‘ƒ(๐ป3 ) = 3 .
According to statement of question, conditional probabilities are the following:
1
2
๐‘ƒ(๐ด|๐ป1) = 1, ๐‘ƒ(๐ด|๐ป2 ) = 0, ๐‘ƒ(๐ด|๐ป3) = .
Evaluate the next probability by total probability formula:
1
1
1 1
๐‘ƒ(๐ด) = โˆ‘๐‘›๐‘–=1 ๐‘ƒ(๐ป๐‘– )๐‘ƒ(๐ด|๐ป๐‘– ) = ๐‘ƒ(๐ป1 )๐‘ƒ(๐ด|๐ป1 ) + ๐‘ƒ(๐ป2 )๐‘ƒ(๐ด|๐ป2 ) + ๐‘ƒ(๐ป3 )๐‘ƒ(๐ด|๐ป3 ) = 3 โˆ™ 1 + 3 โˆ™ 0 + 3 โˆ™ 2 =
1
3
1
2
1 3
3 2
= (1 + ) = โˆ™ =
1
2
If it is known that the event ๐ด has occurred but it is unknown which of the events ๐ป1 , ๐ป2 , ๐ป3 has occurred,
then Bayes` formula is used:
๐‘ƒ(๐ป๐‘˜ |๐ด) =
๐‘ƒ(๐ป๐‘˜ )๐‘ƒ(๐ด|๐ป๐‘˜ )
๐‘ƒ(๐ป๐‘˜ )๐‘ƒ(๐ด|๐ป๐‘˜ )
= ๐‘›
โˆ‘๐‘–=1 ๐‘ƒ(๐ป๐‘– )๐‘ƒ(๐ด|๐ป๐‘– )
๐‘ƒ(๐ด)
In our problem, search for probability
1
๐‘ƒ(๐ป1 )๐‘ƒ(๐ด|๐ป1 ) 3 โˆ™ 1 2
๐‘ƒ(๐ป1 |๐ด) =
=
=
1
๐‘ƒ(๐ด)
3
2
๐Ÿ
Answer: (C) ๐Ÿ‘.
www.AssignmentExpert.com