Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
www.sakshieducation.com DIFFERENTIAL EQUATIONS An equation involving one dependent variable, one or more independent variables and the differential coefficients (derivatives) of dependent variable with respect to independent variables is called a differential equation. Order of a Differential Equation: The order of the highest derivative involved in an ordinary differential equation is called the order of the differential equation. Degree of a Differential Equation: The degree of the highest derivative involved in an ordinary differential equation, when the equation has been expressed in the form of a polynomial in the highest derivative by eliminating radicals and fraction powers of the derivatives is called the degree of the differential equation. www.sakshieducation.com www.sakshieducation.com Very Short Answer Questions 1. Find the order of the family of the differential equation obtained by eliminating the arbitrary constants b and c from xy = ce x + be − x + x 2 . Sol. Equation of the curve is xy = ce x + be − x + x 2 Number of arbitrary constants in the given curve is 2. Therefore, the order of the corresponding differential equation is 2. 2. Find the order of the differential equation of the family of all circles with their centres at the origin. Given family of curves is x 2 + y 2 = a 2 − − − (1) , a parameter. Diff (1) w.r.t x, 2x+2y.y1 =0. Hence required differential equation is x+y.y1 = 0. Order of the differential equation is 1. d 2 y dy 3 3. Find the order and degree of 2 + dx dx d 2 y dy 3 Sol. Given equation is: 2 + dx dx 6/5 = 6y . 6/5 = 6y 3 d 2 y dy i.e. 2 + = (6y)5 / 6 dx dx Order = 2, degree = 1 www.sakshieducation.com www.sakshieducation.com Short Answer Questions 1. Form the differential equation of the following family of curves where parameters are given in brackets. i). y = c ( x − c) ;(c) 2 y = c ( x − c ) − − − − − − (1) 2 Diff. w.r.t x, y1 = c.2 ( x − c ) − − − − ( 2 ) (1) ⇒ ( 2) y x−c = y1 2 ⇒ x−c = 2y y1 and c =x- 2y y1 2 2 y 2 y from (1) , y = x- ⇒ y13 = 4 y ( xy1 − 2 y ) y1 y1 ii) xy = ae x + be− x ; ( a, b ) xy = ae x + be − x − − − (1) Diff. w.r.t. x, y + x. y1 = ae x − be − x − − − ( 2 ) diff .w.r.t. x, y1 + y1 + xy2 = ae x + be − x = xy ∴ 2y1 + xy2 = xy Which is required differential equation. iii) y = ( a + bx ) e kx ; ( a, b ) y = ( a + bx ) ekx − − − (1) Diff. w.r.t x, ⇒ y1 = k ( a + bx ) e kx + be kx ⇒ y1 = ky + be kx − − − ( 2 ) www.sakshieducation.com www.sakshieducation.com Diff. w.r.t. x, ⇒ y2 = ky1 + kbekx ⇒ y2 = ky1 + k ( y1 − ky ) ⇒ y2 = 2ky1 − k 2 y Which is required differential equation. iv) y = a cos(nx + b); ( a, b ) Ans. y2 + n 2 y = 0 2. Obtain the differential equation which corresponds to each of the following family of curves. i) The rectangular hyperbolas which have the coordinates axes as asymptotes. Sol. Equation of the rectangular hyperbola is xy=c2 where c is arbitrary constant. Differentiating w.r.t. x x dy +y=0 dx ii) The ellipses with centres at the origin and having coordinate axes as axes. Sol. Equation of ellipse is x2 a2 + y2 b2 =1 Diff. w.r.t. x, 2x a2 + 2y dy b2 = 0 ⇒ y.y = − x 1 b 2 dx a2 Diff. w.r.t. x, y.y 2 + y1.y1 = − b2 a2 ⇒ y.y2 + 2y1 = y.y1 x ⇒ x ( y.y2 + 2y1 ) = y.y1 www.sakshieducation.com www.sakshieducation.com 3. Form the differential equation corresponding to the family of circles of radius r given by (x – a2) + (y – b)2 = r2, where a and b are parameters. Sol. We have: (x – a2) + (y – b)2 = r2 …(1) Differentiating (1) w.r.to x 2(x − a) + 2(y − b) dy =0 dx … (2) Differentiating (2) w.r.to x 2 1 + (y − b) d 2 y dy + = 0 dx 2 dx From (2) (x − a) = −(y − b) … (3) dy dx Substituting in (1), we get 2 dy 2 (y − b) + (y − b)2 = r 2 dx dy 2 2 (y − b) + 1 = r dx 2 … (4) dy 2 From (3) (y − h) 2 = − 1 + dx dx d2 y dy 2 1 + dx (y − h) = − 2 d y 2 dx 3 dy 2 1 + dx = r2 Substituting in (4): 2 d2y 2 dx 2 d 2 y dy 2 i.e. r 2 2 = 1 + dx dx 3 www.sakshieducation.com www.sakshieducation.com Long Answer Questions 1. Form the differential equations of the following family of curves where parameters are given in brackets. i) y = ae3x + be4x ; (a, b) Sol. y = ae3x + be4x − − − − (1) Differentiating w.r.to x y1 = 3ae3x + 4be4x − − − − − ( 2 ) Differentiating w.r.to x, y 2 = 9ae3x + 16be4x − − − − − ( 3) Eliminating a,b from above equations, y e3 x e4 x y1 3e3 x 4e 4 x = 0 y2 9e3 x 16e4 x y 1 1 ⇒ y1 3 4 =0 y2 9 16 ⇒ y2 − 7 y1 + 12 y = 0 Which is the required differential equation. ii) y = ax2 + bx ; (a, b) Sol. y = ax2 + bx ---- (1) diff. w.r.t. x, y1 = y 2 x + b ⇒ y1x = y 2 x 2 + bx − − − ( 2 ) diff. w.r.t. x, y 2 = 2a ----------- (3) www.sakshieducation.com www.sakshieducation.com From (2) and (3), y1 = y 2 x + b ⇒ y1x = y 2 x 2 + bx − − − ( 4 ) x 2 d2 y dx −2x 2 = 2ax 2 … (i) dy = −4ax 2 − 2bx dx 2y = 2ax2 + 2bx … (ii) … (iii) Adding all three equations we get x2 d2 y dx 2 − 2x dy + 2y = 0 dx iii) ax2 + by2 = 1 ; (a, b) Sol. Given equation is ax2 + by2 = 1 ------ (1) Differentiating w.r.t. x ⇒ 2ax + 2byy1 = 0 ⇒ ax + byy1 = 0 − − − − − − ( 2 ) Differentiating w.r.t. x ( ) ⇒ a + b ( yy2 + y1 y1 ) = 0 ⇒ a + b yy2 + y12 = 0 ( ) ⇒ ax + bx yy2 + y12 = 0 ---- (3) ( 3) − ( 2 ) ⇒ bx ( yy2 + y12 ) − byy1 = 0 ( ) ⇒ x yy2 + y12 − yy1 = 0 b x iv) xy = ax 2 + ; (a, b) Sol. xy = ax 2 + b x x2y = ax2 + b www.sakshieducation.com www.sakshieducation.com Differentiating w.r.t. x x2y1 + 2xy = 3ax2 Dividing with x xy1 + 2y = 3ax … (i) Differentiating w.r.t. x xy2 + y1 + 2y1 = 3a xy2 + 3y1 = 3a … (ii) Dividing (i) by (ii) xy1 + 2y 3ax = =x xy 2 + 3y1 3a Cross multiplying xy1 + 2y = x 2 y 2 + 3xy x 2 y 2 + 2xy1 − 2y = 0 d2 y dy x 2 2 + 2x − 2y = 0 dx dx 2. Obtain the differential equation which corresponds to each of the following family of curves. i) The circles which touch the Y-axis at the origin. Sol. Equation of the given family of circles is x2 + y2 + 2gx = 0, g arbitrary const …(i) x2 + y2 = –2gx Differentiating w.r.t. x 2x + 2yy1 = –2g … (ii) Substituting in (i) x2 + y2 = x(2x + 2yy1) by (ii) = 2x2 + 2xyy1 yy2 – 2xyy1 – 2x2 = 0 www.sakshieducation.com www.sakshieducation.com y2 – x2 = 2xy dy . dx ii) The parabolas each of which has a latus rectum 4a and whose axes are parallel to x-axis. Sol. Equation of the given family of parabolas is (y – k)2 = 4a(x – h) -----(i) Where h,k are arbitrary constants Differentiating w.r.t. x 2(y – k)y1 = 4a (y – k)y1 = 2a …(2) Differentiating w.r.t. x (y – k)y2 + y12 = 0 From (2), y – k = …(3) 2a y1 Substituting in (3) 2a ⋅ y 2 + y12 = 0 ⇒ 2ay 2 + y13 = 0 y1 iii) The parabolas having their foci at the origin and axis along the x-axis. Sol. Given family of parabolas is y2 = 4a(x + a) ----- (i) Diff. w.r.t.x, 2y dy 1 = 4a ⇒ yy′ = a dx 2 ----- (2) From (i) and (2), y2 = 4 1 1 yy′ x + yy′ 2 2 1 y 2 = 2y′x + 4 ⋅ y 2 y′2 ⇒ y 2 = 2yy′x + y 2 y′2 4 2 dy dy y + 2x = y dx dx www.sakshieducation.com www.sakshieducation.com Solutions of Differential Equations Variables Separable: Let the given equation be dy = f (x, y) . If f(x, y) is a variables separable function, dx i.e., f(x, y) = g(x)h(y) then the equation can be written as integrating both sides, we get the solution of dy dy = g (x ) h ( y) ⇒ = g(x)dx . By dx h(y) dy = f (x, y) . This method of finding the solution is dx known as variables separable. Very Short Answer Questions 1. Find the general solution of 1 − x 2 dy + 1 − y 2 dx = 0 . Sol. Given d.e. is 1 − x 2 dy + 1 − y 2 dx = 0 1 − x 2 dy = − 1 − y 2 dx Integrating both sides ∫ dy 1 − y2 = −∫ dx 1− x2 sin–1y = –sin–1x + c Solution is sin–1x + sin–1y = c, where c is a constant. 2. Find the general solution of Sol. dy 2y = . dx x dy 2y dy dx = ⇒∫ =2 dx x y x Integrating both sides log c + log y = 2 log x log cy = log x 2 www.sakshieducation.com www.sakshieducation.com Solution is cy = x2 where c is a constant. Short Answer Questions Solve the following differential equations. 1. dy 1 + y2 = dx 1 + x 2 Sol. dy 1 + y2 = dx 1 + x 2 Integrating both sides ⇒∫ dy 1 + y2 =∫ dx 1+ x2 tan −1 y = tan −1 x + tan −1 c Where c is a constant. 2. dy = e y− x dx dy e y dy dx Sol. = x ⇒ y = x dx e e e Integrating both sides ∫ e − x dx = ∫ e − y dy ⇒ −e− x = −e− y + c e− y = e− x + c Where c is a constant. 3. (ex + 1)y dy + (y + 1)dx = 0 Sol. (ex + 1)y dy = –(y + 1)dx ydy dx =− x y +1 e +1 Integrating both sides 1 e− x dx 1 − dy = − ∫ y + 1 ∫ e− x + 1 www.sakshieducation.com www.sakshieducation.com y − log(y + 1) = log(e− x + 1) + log c ⇒ y − log(y + 1) = log c(e − x + 1) ⇒ y = log(y + 1) + log c(e− x + 1) y = log c(y + 1)(e − x + 1) Solution is: e y = c(y + 1)(e − x + 1) . 4. dy = e x − y + x 2e− y dx dy ex x 2 x −y 2 −y =e +x e = y + y Sol. dx e e Integrating both sides ∫e y ⋅ dy = ∫ (e x + x 2 )dx Solution is: e y = e x + x3 +c 3 5. tan y dx + tan x dy = 0 Sol. tan y dx = –tan x dy dx −dy cos x cos y = ⇒ dx = − dy tan x tan y sin x sin y Taking integration cos x cos y ∫ sin x dx = −∫ sin y dy log sin x = − log sin y + log c log sin x + log sin y = log c log(sin x ⋅ sin y) = log c ⇒ sin x ⋅ sin y = c 6. 1 + x 2 dx + 1 + y 2 dy = 0 Sol. 1 + x 2 dx = − 1 + y 2 dy Integrating both sides ∫ 1 + x 2 dx = − ∫ 1 + y 2 dy www.sakshieducation.com www.sakshieducation.com x 1 × 1 + x 2 + sinh −1 x = 2 2 y 1 + y2 1 = sinh −1 x + c 2 2 x 1 + x 2 + y 1 + y 2 + log (x + 1 + x 2 )(y + 1 + y 2 ) = c 7. y−x dy dy = 5 y2 + dx dx Sol. y − 5y 2 = (x + 5) dy dx dy ⇒ = dx x + 5 y(1 − 5y) Integrating both sides dx 1 dy 5 ∫ x + 5 = ∫ y(1 − 5y) = ∫ y + 1 − 5y dy ln | x + 5 |= ln y − ln |1 − 5y | + ln c ln | x + 5 |= ln cy cy ⇒ x +5 = 1 − 5y 1 − 5y 8. dy xy + y = dx xy + x Sol. dy y(x + 1) y +1 x +1 = ⇒ dy = dx dx x(y + 1) y x 1 1 ∫ 1 + y dy = ∫ 1 + x dx y + log y = x + log x + log c y − x = log cx y www.sakshieducation.com www.sakshieducation.com Short Answer Questions 1. dy 1 + y2 = dx (1 + x 2 )xy dy 1 + y2 = dx (1 + x 2 )xy Sol. ydy dx ⇒ = 2 1+ y x(1 + x 2 ) 2ydy 1 + y2 = 2xdx x 2 (1 + x 2 ) Integrating both sides 2ydy 1 1 ∫ 1 + y2 = ∫ x 2 − 1 + x 2 2x dx log(1 + y 2 ) = log x 2 − log(1 + x 2 ) + log c log(1 + x 2 ) + log(1 + y 2 ) = log x 2 + log c Solution is: (1 + x2)(1 + y2) = cx2 2. dy + x 2 = x 2 ⋅ e3y dx Sol. dy + x 2 = x 2 ⋅ e3y dx ⇒ dy = x 2 ⋅ e3y − x 2 = x 2 (e3y − 1) dx Integrating both sides dy ∫ e3y − 1 = ∫ x log 2 dx ⇒ ∫ e−3y 1− e −3y = ∫ x 2dx (1 − e−3y ) x 3 = +c 3 3 log(1 − e −3y ) = x 3 + c′ (c′ = 3c) Solution is: 1 − e −3y = e x ⋅ k (k = ec′ ) 3 www.sakshieducation.com www.sakshieducation.com 3. (xy2 + x)dx + (yx2 + y)dy = 0 Sol. (xy2 + x)dx + (yx2 + y)dy = 0 x(y2 + 1)dx + y(x2 + 1)dy = 0 Dividing with (1 + x2)(1 + y2) xdx 1+ x2 + ydy 1 + y2 =0 Integrating both sides xdx ydy ∫ 1 + x 2 + ∫ 1 + y2 = 0 1 (log(1 + x 2 ) + log(1 + y 2 ) = log c 2 log(1 + x 2 )(1 + y 2 ) = 2 log c = log c2 (1 + x2)(1 + y2) = k when k = c2. 4. dy = 2y tanh x dx Sol. dy dy = 2y tanh x ⇒ = 2 tanh xdx dx y Integrating both sides ∫ dy = 2 ∫ tanh x dx y log y = 2 log cosh x + log c ln y = 2 ln cosh x + ln c ⇒ y = c cos 2 hx 5. dy sin −1 = x + y dx dy = sin(x + y) ⇒ x + y = t dx 1+ dy dt = dx dx www.sakshieducation.com www.sakshieducation.com dt dt − 1 = sin t ⇒ = 1 + sin t dx dx dt = dx 1 + sin t Integrating both sides dt ∫ 1 + sin t = ∫ dx ∫ 1 − sin t cos 2 t ∫ sec 2 dt = x + c tdt − ∫ tan t ⋅ sec t dt = x + c tan t − sec t = x + c ⇒ tan(x + y) − sec(x + y) = x + c 6. dy y 2 + y + 1 + =0 dx x 2 + x + 1 −dy y + y +1 2 = dx x + x +1 2 Integrating both sides −∫ dy y2 + y + 1 dy =∫ dx x2 + x + 1 dx −∫ = ∫ 2 2 1 3 1 3 y + + x + + 2 4 2 4 2 (y + 1/ 2) 2 (x + 1/ 2) tan −1 = tan −1 +c 3 3/ 2 3 3/ 2 2x + 1 2y + 1 tan −1 + tan −1 =c 3 3 − 7. dy = tan 2 (x + y) dx Sol. dy = tan 2 (x + y) put v = x + y dx dv dy = 1+ = 1 + tan 2 v = sec2 v dx dx www.sakshieducation.com www.sakshieducation.com dv ∫ sec2 v = ∫ dx = ∫ cos 2 v ⋅ dv = x + c (1 + cos 2v) dv = x + c 2 ⇒ ∫ (1 + cos 2v)dv = 2x + 2c ∫ sin 2v = 2x + 2c 2 2v + sin 2v = 4x + c′ v+ 2(x + y) + sin 2(x + y) = 4x + c′ 1 x − y − sin[2(x + y)] = c 2 Homogeneous Equations Homogeneous Differential Equations: A differential equation dy f (x, y) = is said to be a homogeneous differential equation in x, y if both dx g(x, y) f(x, y), g(x, y) are homogeneous functions of same degree in x and y. To find the solution of the h .d.e put y = vx, then dy dv = v+x . Substituting these values in given dx dx differential equation, then it reduces to variable separable form. Then we find the solution of the d.e. www.sakshieducation.com www.sakshieducation.com Very Short Answer Questions y dy 1. Express xdy − ydx = x 2 + y2 dx in the form F = . x dx Sol. x ⋅ dy − ydx = x 2 + y 2 dx x dy dy − y = x 2 + y2 ⇒ x = y + x 2 + y2 dx dx dy y x 2 + y2 y y = + = + 1+ 2 dx x x x x y 2 dy Which is of the form F = x dx y y y dy 2. Express x − yTan −1 dx + x tan −1 dy = 0 in the form F = . x x x dx y y Sol. Given x − yTan −1 dx + x tan −1 dy = 0 x x y y x tan −1 dy = − x − y tan −1 dx x x y y dy y tan −1 = − 1 − tan −1 x x dx x = y y tan −1 − 1 x x y y ⋅ tan −1 − 1 dy x x = F y = dx y x tan −1 x 3. Express x ⋅ Sol. x ⋅ dy y dy = y(log y − log x + 1) in the form F = . dx x dx dy = y(log y − log x + 1) dx dy y y = log + 1 dx x x www.sakshieducation.com www.sakshieducation.com Short Answer Questions Solve the following differential equations. 1. dy x − y = dx x + y Sol. dy x − y = ----- (1) dx x + y (1) is a homogeneous d.e. Put y = vx dy dv = v+x dx dx dv x − vx x(1 − v) v+x = = dx x + vx x(1 + v) dv 1 − v 1 − v − v − v 2 1 − 2v − v 2 = −v= = x⋅ dx 1 + v 1+ v 1+ v (1 + v)dv ∫ 1 − 2v − v2 = ∫ dx x 1 − log(1 − 2v − v 2 ) = log x + log c 2 1 y y2 − log 1 − 2 ⋅ − 2 = log cx 2 x x log (x 2 − 2xy − y2 ) x 2 x 2 − 2xy − y 2 x 2 = −2log cx = log(cx) −2 = (cx) −2 = (x 2 − 2xy − y 2 ) = 1 c2 1 2 2 c x =k www.sakshieducation.com www.sakshieducation.com 2. (x2 + y2)dy = 2xy dx Sol. dy 2xy = 2 which is a homogeneous d.e. dx x + y 2 Put y = vx dy dv = v+x⋅ dx dx v+x⋅ x⋅ dv 2x(vx) 2v = 2 = dx x + v 2 x 2 1 + v 2 dv 2v 2v − v − v3 v − v3 = − v = = dx 1 + v 2 1 + v2 1 + v2 1 + v2 ∫ v(1 − v2 ) dv = ∫ Let 1 + v2 v(1 − v ) 2 = dx x A B C + + v 1+ v 1− v 1 + v 2 = A(1 − v 2 ) + BV(1 − v) + CV(1 + v) 1 + v2 dv dv dv v = 0 ⇒1= A dv = ∫ − ∫ +∫ ∫ 2 v 1+ v 1− v v(1 − v ) v = 1 ⇒ 1 + 1 = C(2) ⇒ c = 1 v = −1 ⇒ 1 + 1 = B(−1)(2) ⇒ 2 = −2B ⇒ B = −1 = log v − log(1 + v) − log(1 − v) = log ∴ log v 1 − v2 v 1− v 2 v 1 − v2 = log x + log c = log cx = cx ⇒ v = cx(1 − v 2 ) y2 y y (x 2 − y 2 ) = cx 1 − 2 ⇒ = cx x x x x2 Solution is: y = c(x 2 − y 2 ) www.sakshieducation.com www.sakshieducation.com 3. dy −(x 2 + 3y 2 ) = dx (3x 2 + y2 ) Sol. dy −(x 2 + 3y 2 ) = which is a homogeneous d.e. dx (3x 2 + y2 ) Put y = vx dy dv = v+ x⋅ dx dx v+ x⋅ x⋅ dv −(x 2 + 3v 2 x 2 ) − x 2 (1 + 3v 2 ) = = 2 dx 3x 2 + v 2 x 2 x (3 + v 2 ) dv 1 + 3v 2 = −v − dx 3 + v2 = −3v − v3 − 1 − 3v 2 3 + v2 3 + v2 (v + 1) 3 3 + v2 (v + 1) 3 =− (v + 1)3 3 + v2 = −dx x = A B C + + 2 v + 1 (v + 1) (v + 1)3 Multiplying with (v + 1)3 3 + v2 = A(v + 1)2 + B(v + 1) + C v = –1 ⇒ 3 + 1 = C ⇒ C = 4 Equating the coefficients of v2 A=1 Equating the coefficients of V 0 = 2A + B B = –2A = –2 v2 + 3 (v + 1) 3 = v2 + 3 1 2 4 − + 2 v + 1 (v + 1) (v + 1)3 ∫ (v + 1)3 = −∫ dx x www.sakshieducation.com www.sakshieducation.com 1 2 4 2 4 c ∫ v + 1 − (v + 1)2 + (v + 1)3 dv = − log x + log c log(v + 1) + v + 1 − 2(v + 1)2 = log x Solution is: 2 2 c y log + 1 + − = log 2 x x y +1 y 1 + x x 2x 2x 2 c (x + y) − = log − log 2 x + y (x + y) x x 2x 2 + 2xy − 2x 2 (x + y) 2xy (x + y) 2 2 = log = log c x+y c x+y c 2xy x+y log =− c = − log (x + y) 2 c x+y 4. y2 dx + (x2 – xy)dy = 0 Sol. y2 dx + (x2 – xy)dy = (xy – x2)dy dy y2 = Which is a homogeneous d.e. dx xy − x 2 Let y = vx ⇒ v+x x⋅ dy dv = v+x⋅ dx dx dv v2 x 2 = 2 dx x (v − v2 ) dv v2 v2 − v2 + v = −v= dx v − 1 v −1 v −1 dx dx 1 dv = ⇒ ∫ 1 − dv = ∫ v x x v v − log v = log x + log k v = log v + log x + log k = log k(vx) y = log ky ⇒ ky = e y / x x www.sakshieducation.com www.sakshieducation.com dy (x + y) 2 = dx 2x 2 5. dy (x + y) 2 = Which is a homogeneous d.e. dx 2x 2 Sol,. y = vx ⇒ v+x x dy dv = v+x dx dx 2 dv (x + vx)2 2 (1 + v) = = x dx 2x 2 2x 2 dv (1 + v 2 ) 1 + v 2 + 2v − 2v = −v= dx 2 2 2∫ dv 1 + v2 =∫ dx ⇒ 2 tan −1 v = log x + log c x y 2 tan −1 = log cx x 6. (x2 – y2)dx – xy dy = 0 Sol. (x2 – y2)dx – xy dy = 0 (x2 – y2)dx = xy dy dy x 2 − y 2 = dx xy dy dv = v+x y = vx ⇒ dx dx v+x x dv x 2 − v 2 x 2 x 2 (1 − v 2 ) = = dx vx 2 vx 2 dv 1 − v 2 1 − v 2 − v 2 1 − 2v 2 = −v= = dx v v v vdv ∫ 1 − 2v2 = ∫ dx x 1 − log(1 − 2v 2 ) = log x + log c 4 www.sakshieducation.com www.sakshieducation.com 2y 2 1 − log 1 − 2 = log x + log c 4 x x 2 − 2y 2 1 − log = log x + log c x2 4 1 − log(x 2 − 2y 2 ) − log x 2 = log x + log c 4 1 1 − log(x 2 − 2y 2 ) + ⋅ 2 log x = log x + log c 4 4 1 1 − log(x 2 − 2y 2 ) = log x + log c 4 2 − log(x 2 − 2y 2 ) = −2 log x − 4 log c log(x 2 − 2y2 ) = −2 log x + log k where k = 1 c4 = log k x2 ⇒ x 2 − 2y 2 = Solution is: x2(x2 – 2y2) = k 7. (x2y – 2xy2)dx = (x3 – 3x2y)dy Sol. (x2y – 2xy2)dx = (x3 – 3x2y)dy dy x 2 y − 2xy 2 Which is a homogeneous d.e. = 3 dx x − 3x 2 y Put y = vx so that v+x dv x 3 v − 2v 2 x 3 = 3 dx x − 3vx 3 = x dy dv = v+x dx dx (v − 2v 2 )x 3 (1 − 3v)x 3 v − 2v 2 = 1 − 3v dv v − 2v 2 = −v dx 1 − 3v = v − 2v 2 − v(1 − 3v) −2v 2 + 3v 2 = 1 − 3v 1 − 3v dv v2 1 − 3v dx x = ⇒ 2 dv = dx 1 − 3v x v www.sakshieducation.com k x2 www.sakshieducation.com 1 3 ∫ v2 − v dv = ∫ dx x −1 − 3log v = log x + log c v −x y = 3log = log x + log c y x 3 −x y − log = log xc y x −x y3 = log xc + log 3 y x cy3 −x y3 = log cx ⋅ 3 = log 2 x y x cy3 x2 = e − x / y ⇒ cy3 = x2 ex / y cy3 ⋅ e x / y = x 2 8. y2 dx + (x2 – xy + y2)dy = 0 Sol. y2 dx = –(x2 – xy + y2)dy dy − y2 = 2 dx x − xy + y 2 dy dv y = vx ⇒ = v+x dx dx v+x x = dv −v2 x 2 − v2 x 2 = 2 = dx x − vx 2 + v 2 x 2 x 2 (1 − v + v 2 ) dv − v2 = −v dx 1 − v + v 2 − v 2 − v + v 2 − v3 1 − v + v2 1 − v + v2 v(1 + v 2 ) Let dv = − 1 − v + v2 v(1 + v ) 2 = =− v(1 + v 2 ) 1 − v + v2 dx x … (1) A Bv + C + v 1 + v2 www.sakshieducation.com www.sakshieducation.com 1 − v + v2 = A(1 + v 2 ) + (Bv + C)v v=0⇒1=A Equating the coefficients of v2 1=A+B⇒B=0 Equating the coefficients of v −1 = C ⇒ 1 − v + v2 v(1 + v ) 2 1 − v + v2 ∫ v(1 + v2 ) dv = ∫ = 1 1 − v 1 + v2 dv dv −∫ = log v − tan −1 v From (1) we get 2 v 1+ v log v − tan −1 v = − log x + log c tan −1 v = log v + log x − log c = log vx y = log c c −1 −1 y = e tan v = e tan (y / x) c Solution is: y = c ⋅ e tan −1 (y / x) 9. (y2 – 2xy)dx + (2xy – x2)dy = 0 Sol. (y2 – 2xy)dx + (2xy – x2)dy = 0 (2xy – x2)dy = –(y2 – 2xy)dx dy 2xy − y2 = dx 2xy − x 2 Put y = vx ⇒ dy dv = v+x dx dx dv 2vx 2 − v2 x 2 x 2 (2v − v 2 ) = = 2 v+x dx 2vx 2 − x 2 x (2v − 1) x dv 2v − v 2 = −v dx 2v − 1 = 2v − v 2 − 2v 2 + v 3v(1 − v) = 2v − 1 2v − 1 www.sakshieducation.com www.sakshieducation.com 2v − 1 ∫ v(1 − v) dv = 3∫ dx x … (1) 2v − 1 A B = + v(1 − v) v 1 − v 2v − 1 = A(1 − v) + Bv Let v = 0 ⇒ −1 = A ⇒ A = −1 v =1⇒1= B ⇒ B =1 1 1 dx x − log v − log(1 − v) = 3log x + log c ∫ − v + 1 + v dv = 3∫ log 1 = log cx 3 v(1 − v) 1 1 = cx 3 ⇒ v(1 − v) = 3 v(1 − v) cx y y 1 yx−y 1 1− = 3 ⇒ = 3 x x cx x x cx 1 1 xy(x − y) = = k ⇒ xy(y − x) = − = k c c 10. dy y y 2 + = dx x x 2 Sol. dy y y 2 + = Which is a homogeneous d.e. dx x x 2 Put y = vx ⇒ dy dv = v+x dx dx dv v2 x 2 dv v+x +v= 2 ⇒x = v2 − 2v dx dx x dv v − 2v 2 Let = dy x 1 v − 2v 2 = A B + v v−2 1 = A(v − 2) + Bv www.sakshieducation.com www.sakshieducation.com 1 2 1 v = 2 ⇒ 1 = 2B ⇒ B = 2 v = 0 ⇒ 1 = A(−2) ⇒ − − 1 1 1 dx − dv = ∫ ∫ 2 v v−2 x − 1 [log v − log(v − 2)] = log x + log c 2 1 v − log = log cx 2 v − 2 log v = − log cx = log(cx)−2 v−2 v (y / x) 1 = (cx)−2 ⇒ = 2 2 v−2 (y / x) − 2 c x y 1 1 = 2 2 ⇒ x 2 y = 2 (y − 2x) y − 2x c x c Solution is: y − 2x = c2 x 2 y = kx 2 y Where k = c2 11. xdy − ydx = x 2 + y2 dx Sol. xdy − ydx = x 2 + y2 dx x dy − y = x 2 + y2 dx dy y − = dx x x 2 + y2 x Put y = vx ⇒ dv ∴x = dx ∫ dv 1 + v2 dy dv = v+x dx dx x 2 + y 2 x 1 + v2 = x x =∫ dx ⇒ sinh −1 v = log x + log c x www.sakshieducation.com www.sakshieducation.com log v + 1 + v 2 = log cx ⇒ v + 1 + v 2 = cx y y2 + 1 + 2 = cx ⇒ y + x 2 + y 2 = cx 2 x x 12. (2x – y)dy = (2y – x)dx Sol. dy 2y − x = dx 2x − y Put y = vx ⇒ dv x(2v − 1) = dx x(2 − v) v+x x dy dv = v+x dx dx dv 2v − 1 2v − 1 − 2v + v 2 = −v= dx 2 − v 2−v 2−v v −1 2 dv = dx dv vdv dx ⇒ 2∫ 2 −∫ 2 =∫ x x v −1 v −1 1 v −1 1 2 ⋅ log − log(v 2 − 1) = log x + log c 2 v +1 2 1 v −1 − log(v 2 − 1) = log cx 2 log 2 v +1 1 (v − 1) 2 1 ⋅ = log cx log 2 2 (v + 1) (v − 1)(v + 1) log v −1 (v + 1) 2 = 2 log cx = log c 2 x 2 y −1 2 2 x c x ⇒ = c2 x 2 ∴ = 3 3 (v + 1) y + 1 x v −1 y−x x 2 (y − x) 2 2 x =c x ⇒ = c2 x 2 3 3 (y − x) (x + y) x3 (y – x) = c2 (x + y)3. www.sakshieducation.com www.sakshieducation.com 13. (x 2 − y 2 ) Sol. dy = xy dx dy xy = 2 dx (x − y 2 ) Put y = vx ⇒ v+x x dv x(vx) v = 2 = 2 2 dx x − v x 1 − v2 dv v v − v + v3 v3 v = − = = dx 1 − v 2 1 − v2 1 − v2 1 − v2 v − dy dv = v+x dx dx 3 1 2v 2 dv = dx dv dv dx ⇒∫ 3 −∫ =∫ x v x v − log v = log x + c 1 x2 − = log vx + c = log y + c 2 y2 −x 2 2y 2 = (log y + c) ⇒ − x 2 = 2y 2 (c + log y) x2 + 2y2 (c + log y) = 0. 14. Solve 2 dy y y2 = + dx x x 2 Sol. Put y = vx ⇒ 2v + 2x dy dv = v+x dx dx dv dv = v + v 2 ⇒ 2x = v2 − v dx dx dv dx 1 dx 1 =2 ⇒ ∫ − dv = 2 ∫ v(v − 1) x x v −1 v log(v – 1) – log v = 2 logx + log c log v −1 v −1 = log cx 2 ⇒ = cx 2 v v www.sakshieducation.com www.sakshieducation.com y −1 y−x x = cx 2 ⇒ = cx 2 y y x Solution is : (y – x) = cx2y Long Answer Questions ( ) x 1. Solve 1 + e x / y dx + e x / y 1 − dy = 0 . y ( ) x Sol. 1 + e x / y dx + e x / y 1 − dy = 0 y x e x/ y 1 − dx y Which is a homogeneous d.e. ⇒ =− dy 1 + e x/y ( Put x = vy ⇒ (1 + e v ) ) dx dv = v+y dy dy dx v + e (1 − v) = 0 dy dv (1 + e v ) v + y + e v (1 − v) = 0 dy dv v + ve v + y(1 + e v ) + e v − ve v = 0 dy y(1 + e v )dv = −(v + e v )dy 1 + ev ∫ v + ev dv = − ∫ dy y log(v + e v ) = − log y + log c ⇒ v + e v = c y x x/y c +e = ⇒ x + y ⋅ ex / y = c y y www.sakshieducation.com www.sakshieducation.com y dy y = y sin − x x dx x 2. Solve x sin ⋅ y dy y = y sin − x x dx x Sol. x sin ⋅ y y x sin − dy x x y ⇒ = dx y sin x Put y = vx ⇒ dy dv = v+x dx dx 1 v sin v − dv v v+x = dx sin v x dv v sin v − 1 − v sin v = dx sin v − sin vdv = 1 dx x dx x ⇒ cos v = log x + log c = log cx ⇒ ∫ − sin v ⋅ dv = + ∫ ⇒ cx = ecos v = ecos(y / x) . y 3. Solve xdy = y + x cos 2 dx . x Sol. x dy y dy y y = y + x ⋅ cos 2 ⇒ = + cos 2 dx x dx x x Put y = vx, dy dv dv = v+x ⇒ v+x = v + cos 2 v dx dx dx dv dx dx 2 = ⇒ sec v ⋅ dv = ∫ ∫ x cos 2 v x tan v = logx + c y i.e. tan = log x + c . x www.sakshieducation.com www.sakshieducation.com 4. Solve: (x – y log y + y log x)dx + x(log y – log x)dy = 0. Sol. Dividing with x. dx we get 1− y y y dy log y + log x + log =0 x x x dx y y y dy 1 − log y − log + log =0 x x x dx Put y = vx, dy dv = v+x dx dx dv 1 − v[log v] + log v v + x = 0 dx dv 1 − v log v + v log v + x log v =0 dx x log v dv dx = −1 ⇒ ∫ log v dv = − ∫ dx x v log v − ∫ dv = c − log x v log v − v = c − log x v + c = v log v + log x ⇒ v + c = v log v + log x y y y + c = log + log x x x x y y + cx = y log + x log x x = y log y − y log x + x log x = (x − y) log x + y log y 5. Solve: (ydx + xdy)x cos Sol. (ydx + xdy)x cos y y = (xdy − ydx)y sin x x y y = (xdy − ydx)y sin x x y y y y dy 2 2 =0 xy ⋅ cos + y sin − xy ⋅ sin − x cos x x x x dx www.sakshieducation.com www.sakshieducation.com y y xy ⋅ cos + y 2 sin dy x x = dx y y xy sin − x 2 cos x x 2 y y y y cos + sin x x x x = F y = y y y x sin − cos x x x ∴ This is a homogeneous equation y = vx ⇒ v+x dy dv = v+x dx dx dv v cos v + v 2 sin v = dx v sin v − cos v dv v cos v + v 2 sin v x = −v dx v sin v − cos v v cos v + v 2 sin v − v 2 sin v + v cos v v sin v − cos v 2v cos v = v sin v − cos v = v sin v − cos v 2 = dv v cos v x 1 2 ∫ tan v − v dv = ∫ x dv log sec v − log v = 2 log | x | ∴ log x 2 = log But c c ⇒ x2 = v cos v v cos v y =v x Solution is: x2 = y ⇒ xy cos = c y y x ⋅ cos x x c www.sakshieducation.com www.sakshieducation.com 6. Find the equation of a curve whose gradient is dy y y = − cos 2 , where x > 0, y > 0 and dx x x which passes through the point (1, π/4). Sol. dy y y = − cos 2 which is homogeneous d.eq. dx x x Put y = vx dy dv = v+x dx dx v+x ∫ sec dv dv dx = v − cos 2 v ⇒ ∫ = − ∫ dx x cos 2 v 2 v = −∫ dx ⇒ tan v = − log | x | + c x This curve passes through (1, π/4) π tan = c − log1 ⇒ c = 1 4 Equation of the curve is : y tan v = 1 − log | x |⇒ tan 1 − log | x | x x 7. Solve (1 + 2e x / y )dx + 2e x / y 1 − dy = 0 . y x Sol. (1 + 2e x / y )dx = −2e x / y 1 − dy y x = 2e x / y − 1 dy y x 2e x / y − 1 dy y = dx 1 + 2e x / y Put x = vy www.sakshieducation.com www.sakshieducation.com dx dv dv 2e v (v − 1) = v+y ⇒ v+y = dy dy dy 1 + 2e v y = dv 2e v (v − 1) = −v dy 1 + 2e v 2ve v − 2e v − v − 2v 1 + 2e v 1 + 2e v ∫ v + 2e v dv = −∫ e = v −(2e v + v) 1 + 2e v dy y log(v + 2e v ) = − log y + log c = log v + 2e v = c y c y Solution is: x c + 2e x / y = ⇒ x + 2y ⋅ e x / y = c y y y y Solve x sec (ydx + xdy) = y csc (xdy − ydx) . x x 8. y y y dy y dy Sol. x sec (ydx + xdy) = y csc (xdy − ydx) ⇒ x sec y + x = y csc x − y x x x dx x dx x dy y y x ⋅ sec − y ⋅ csc dx x x y y = − y y csc + x sec x x y y − y y csc + x sec dy x x = dx y y x x sec − y csc x x This is a homogeneous equation. Put y = vx dy dv = v+x dx dx v+x dv v csc v + sec v = v dx v csc v − sec v www.sakshieducation.com www.sakshieducation.com 1 v + v sin v cos v v(v cosv + sin v) = = 1 1 v cos v − sin v − v sin v cos v dv v(v cos v + sin v) = −v dx v cos v − sin v v(v cos v + sin v − v cos v + sin v) = v cos v − sin v 2v sin v = v cos v − sin v x v cos v − sin v dx dv = 2 ∫ v sin v x cos v 1 dx ∫ sin v dv − ∫ v dv = 2∫ x ∫ log sin v − log v = 2 log x + log c sin v sin v 2 log = cx 2 = log cx ⇒ v v x y y sin = cx 2 ⇒ sin = cxy y x x Non- Homogeneous Equations Equations Reducible to Homogeneous Form: The differential equation of the form dy ax + by + c = is called non homogeneous differential dx a ′x + b′y + c′ equation. www.sakshieducation.com www.sakshieducation.com Very Short Answer Questions I. Solve the following differential equations. 1. dy 12x + 5y − 9 =− dx 5x + 2y − 4 Sol. from given d.e. b = –5, a = 5 ⇒ b = –a (5x + 2y – 4)dy = –(12x + 5y – 9)dx (5x + 2y – 4)dy + (12x + 5y – 9)dx = 0 5(x dy+y dx) + 2y dy–4 dy+12x dx – 9 dx = 0 Integrating 5xy + y2 – 4y + 6x2 – 9x = c. 2. dy −3x − 2y + 5 = dx 2x + 3y + 5 Sol. From given d.e. b = –2, a = 2 ⇒ b = –a (2x + 3y + 5)dy = (–3x – 2y + 5)dx 2x dy + 3y dy + 5dy = –3x dx –2y dx + 5 dx 2x dy + 3y dy + 5dy + 3x dx –2y dx + 5 dx = 0 Integrating 2xy + 3 2 3 2 y + x + 5y − 5x = c 2 2 4xy + 3y 2 + 3x 2 − 10x + 10y = 2c = c′ Solution is 4xy + 3(x2 + y2) – 10(x – y) = c. www.sakshieducation.com www.sakshieducation.com 3. dy −3x − 2y + 5 = dx 2x + 3y − 5 Sol. dy −3x − 2y + 5 = dx 2x + 3y − 5 Here b = –2, a′ = 2, b = –a′ (2x + 3y – 5)dy = (–3x – 2y + 5)dx ⇒ 2(x dy+y dx) + (3y – 5)dy + (3x – 5)dx = 0 ⇒ 2d xy + (3y – 5)dy + (3x – 5)dx = 0 Now integrating term by term, we get 2 ∫ d(xy) + ∫ (3y − 5)dy + ∫ (3x − 5)dx = 0 y2 x2 c ⇒ 2xy + 3 − 5y + 3 − 5x = 2 2 2 (or)3x 2 + 4xy + 3y 2 − 10x − 10y = c Which is the required solution. 4. 2(x − 3y + 1) dy = 4x − 2y + 1 dx Sol. (2x – 6y + 2)dy = (4x – 2y + 1)dx (2x – 6y + 2)dy – (4x – 2y + 1)dx = 0 2(x dy + y dx) – 6y dy + 2 dy – 4x dx – dx = 0 Integrating 2xy – 3y2 – 2x2 + 2y – x = c. 5. dy x − y + 2 = dx x + y − 1 Sol. b = –1, a′ = a ⇒ b = –a′ (x + y – 1)dy = (x – y + 2)dx (x + y – 1)dy – (x – y + 2)dx = 0 (x dy + y dx) + y dy – dy – x dx – 2 dx = 0 www.sakshieducation.com www.sakshieducation.com Integrating xy + y2 x 2 − − y − 2x = c 2 2 2xy + y 2 − x 2 − 2y − 4x = 2c = c′ 6. dy 2x − y + 1 = dx x + 2y − 3 Sol. b = –1, a′ = 1 ⇒ b = –a′ (x + 2y – 3)dy = (2x – y + 1)dx (x + 2y – 3)dy – (2x – y + 1)dx = 0 (x dy + y dx) + 2y dy – 3 dy – 2x dx – dx = 0 Integrating: xy + y2 – x2 – 3x – x = c www.sakshieducation.com www.sakshieducation.com Short Answer Questions Solve the following differential equations. 1. (2x + 2y + 3) Sol. dy =x+y+1 dx ( x + y) +1 dy x + y +1 = = dx 2x + 2y + 3 2 ( x + y ) + 3 Let v = x + y so that dv dy = 1+ dx dx dv v + 1 2v + 3 + v + 1 3v + 4 = 1+ = = dx 2v + 3 2v + 3 2v + 3 2v + 3 dv = dx 3v + 4 2 1 3 ⋅ dv dv + ∫ = dx ∫ 3 9 3v + 4 ∫ 2 1 v + log(3v + 4) = x + c 3 9 Multiplying with 9 6v + log(3v + 4) = 9x + 9c 6(x + y) + log[3(x + y) + 4] = 9x + c i.e. log(3x + 3y + 4) = 3x – 6y + c 2. dy 4x + 6y + 5 = dx 2x + 3y + 4 Sol. dy 4x + 6y + 5 2 ( 2x + 3y ) + 5 = = dx 2x + 3y + 4 2x + 3y + 4 Let v = 2x + 3y dv dy dv 3(2v + 5) = 2+3 ⇒ = 2+ dx dx dx v+4 www.sakshieducation.com www.sakshieducation.com 2v + 8 + 6v + 15 8v + 23 = v+4 v+4 v+4 dv = dx 8v + 23 = 1 9 dv dv + ∫ = dx ∫ 8 8 8v + 23 ∫ 1 9 v + log(8v + 23) = x + c 8 64 Multiplying with 64 8v + 9 log(8v + 23) = 64x + 64c 8(2x + 3y) – 64x + 9log(16x + 24y + 23) = c′ Dividing with 8 9 2x + 3y − 8x + log(16x + 24y + 23) = c′′ 8 9 3x − 6x + log(16x + 24y + 23) = c′′ 8 Dividing with 3, solution is : 3 y − 2x + log(16x + 24y + 23) = k 8 3. (2x + y + 1)dx + (4x + 2y – 1)dy = 0 Sol. dy 2x + y + 1 =− dx 4x + 2y − 1 ⇒ a1 = 2, b1 = 1, a 2 = 4, b 2 = 2 a1 2 1 b1 = = = a 2 4 2 b2 Let 2x + y=v so that dv dy = 2+ dx dx dv v + 1 4v − 2 − v − 1 3(v − 1) = 2− = = dx 2v − 1 2v − 1 2v − 1 2v − 1 2v − 1 dv = dx ⇒ dv = 3dx 3(v − 1) v −1 www.sakshieducation.com www.sakshieducation.com 1 ∫ 2 + v − 1 dv = 3∫ dx 2v + log(v − 1) = 3x + c 2v − 3x + log(v − 1) = c 2(2x + y) − 3x + log(2x + y − 1) = c 4x + 2y − 3x + log(2x + y − 1) = c Solution is x + 2y + log(2x + y – 1) = c 4. dy 2y + x + 1 = dx 2x + 4y + 3 Sol. dy 2y + x + 1 = dx 2x + 4y + 3 Let v = x + 2y so that dv 2dy = 1+ dx dx dv 2(v + 1) 2v + 3 + 2v + 2 4v + 5 = 1+ = = dx 2v + 3 2v + 3 2v + 3 1 2v + 3 1 dv = dx ⇒ ∫ + dv = ∫ dx 4v + 5 2 2(4v + 5) 1 1 1 v + ⋅ log(4v + 5) = x + c 2 2 4 Multiplying with 8 4v + log(4v + 5) = 8x + 8c 4(x + 2y) − 8x + log[4(x + 2y) + 5] = c′ Solution is: 4x + 8y – 8x + log(4x + 8y + 5) = c′ 8y – 4x + log(4x + 8y + 5) = c′ www.sakshieducation.com www.sakshieducation.com 5. (x + y – 1)dy = (x + y + 1)dx Sol. dy x + y + 1 = dx x + y − 1 v=x+y⇒ dv dy = 1+ dx dx dv v + 1 v − 1 + v + 1 2v = 1+ = = dx v −1 v −1 v −1 v −1 1 dv = 2 ∫ dx ⇒ ∫ 1 − dv = 2x + c v v v − log v = 2x + c ∫ x + y − log(x + y) = 2x − c (x – y) + log (x + y) = c is the required solution. www.sakshieducation.com www.sakshieducation.com Long Answer Questions Solve the following differential equations. 1. dy 3y − 7x + 7 = dx 3x − 7y − 3 Sol. ⇒ a1 = −7, b1 = 3, a 2 = 3, b 2 = −7 a1 −7 b1 3 = , = a2 3 b 2 −7 ∴ a1 b1 ≠ a 2 b2 Let x = x + h, y = y + k Where 3k − 7h + 7 = 0 and3h − 7k − 3 = 0 and dy dY = dx dX Solving these equations, h = 0 and k = 1 dy 3y − 7x = which is a homogeneous d.e. dx 3x − 7y Put y = vx ⇒ v+x x dy dv = v+x dx dx dv x(3v − 7) = dx x(3 − 7v) dv 3v − 7 3v − 7 − 3v + 7v 2 = −v= dx 3 − 7v 3 − 7v 7v 2 − 7 7v 2 − 7 = = 3 − 7v 3 − 7v 3 − 7v 7v 2 − 7 3 = dx x 7vdv ∫ 7v2 − 7 dv − ∫ 7v2 − 7 = ∫ ln x = dx x 3 v −1 1 ln − ln | v 2 − 1| 14 log x–log c 14 v + 1 2 x = 3log v −1 − 7 log | v 2 − 1|⇒ 14 ln x − ln c v +1 www.sakshieducation.com www.sakshieducation.com = 3ln(v − 1) − 3ln(v + 1) − 7 ln(v + 1) − 7 ln(v − 1) 14 ln x − ln c = −10 ln(v + 1) − 4 ln(v − 1) ln(v + 1)5 + ln(v − 1) 2 + ln x 7 = ln c (v + 1)5 ⋅ (v − 1)2 ⋅ x 7 = c 5 2 y y 7 + 1 − 1 x = c x x (y − x)2 (y + x)5 = c [y − (x − 1)]2 (y + x − 1)5 = c Solution is [y − x + 1)]2 (y + x − 1)5 = c 2. dy 6x + 5y − 7 = dx 2x + 18y − 14 Sol. dy 6x + 5y − 7 = dx 2x + 18y − 14 x = X + h, y = Y + k dY dy 6(X + h) + 5(Y + k) − 7 = = dX dx 2(X + h) + 18(Y + k) − 14 = (6X + 5Y) + (6h + 5k − 7) (2X + 18Y) + (2h + 18k − 14) h +5 18 k −7 −14 1 +6 +2 5 18 h k 1 = = −70 + 126 −14 + 84 108 − 10 h= 56 4 70 5 = ,k = = 98 7 98 7 dY 6X + 5Y = dX 2X + 18Y dY dV Y = VX ⇒ = V+X dX dX dV 6X + 5VX X(6 + 5V) V+X = = dX 2X + 18VX X(2 + 18V) X dV 6 + 5V 6 + 5V − 2V − 18V 2 = −V = dX 2 + 18V 2 + 18V www.sakshieducation.com www.sakshieducation.com 6 + 3V − 18V 2 3(2 + V − 6V 2 ) = = 2 + 18V 2 + 18V 2 + 18V ∫ 6V 2 − V − 2 dV = −3∫ 2 + 18V Let 6V − V − 2 2 = dX X A B + 3V − 2 2V + 1 Multiplying with (3V – 2)(2V + 1) 2 + 18V = A(2V + 1) + B(3V – 2) 2 4 ⇒ 2 + 12 = A + 1 3 3 7 14 = A − ⇒ A = 6 3 1 3 V = − ⇒ 2 − 9 = B − − 2 2 2 V= 7 −7 = − B ⇒ B = 2 2 2 dX 6 ∫ 3V − 2 + 2V + 1 dV = −3∫ X 2 log(3V – 2) + log(2V + 1) = –3 log X + log c log (3V – 2)2 (2V + 1) + log X3 = log c log X3 (3V – 2)2 (2V + 1) = log c X3 (3V – 2)2 (2V + 1) = c 3 3Y 2 2Y X − 2 + 1 = c X X X3 (3Y − 2X)2 (2Y + X) =c X X2 5 4 3 y − 7 − 2 x − 7 2 5 4 2 y − + x − = c 7 7 (3y − 2x − 1)2 (2y + x − 2) =c 7 72 www.sakshieducation.com www.sakshieducation.com Solution is: (3y – 2x – 1)2 (x + 2y – 2) = 343c = c″ 3. dy 10x + 8y − 12 + =0 dx 7x + 5y − 9 Sol. dy 10x + 8y − 12 + =0 dx 7x + 5y − 9 x = X + h, y = Y + k ⇒ dY dy = dX dx dY 10(X + h) + 8(Y + k) − 12 + =0 dX 7(X + h) + 5(Y + k) − 9 dY (10X + 8Y) + (10h + 8k − 12) + dX (7X + 5Y) + (7h + 5k − 9) Choose h and k so that: 10h + 8k – 12 = 0, 7h + 5k – 9 = 0 h +8 +5 k −12 −9 I 10 +7 8 5 h k 1 = = −72 + 60 −84 + 90 50 − 56 h= −12 6 = 2, k = = −1 −6 −6 dY 10X + 8Y =− dX 7X + 5Y dY dV = V+X dX dX dV 10X + 8VX X(10 + 8V) V+X =− =− dX 7X + 5VX X(7 + 5V) Y = VX ⇒ X dV 10 + 8V −10 − 8V − 7V − 5V 2 =− −V = dX 7 + 5V 7 + 5V X dV 5(V 2 + 3V + 2) =− dX 7 + 5V www.sakshieducation.com www.sakshieducation.com 5V + 7 dX X 5V + 7 A B = + (V + 1)(V + 2) V + 1 V + 2 ∫ (V + 1)(V + 2) dV = −5∫ 5V + 7 = A(V + 2) + B(V + 1) V = −1 ⇒ 2 = A(−1 + 2) = A ⇒ A = 2V V = −2 ⇒ −3 = B(−2 + 1) = − B, B = 3 2 3 ∫ V + 1 + V + 2 dV = −5∫ dX X 2 log(V + 1) + 3 log (V + 2) = –5 log X + c c = 2 log(V + 1) + 3 log(V + 2) + 5 log X = log(V + 1)2 (V + 2)3 x5 2 3 (Y + X)2 (Y + 2X)3 5 Y Y log + 1 + 2 X5 = log X X X X2 X3 ⇒ (Y + X) 2 (Y + 2X)3 = ec = c′ (Y + 1 − X − 2)2 (Y + 1 − 2x − 4)3 = c Solution is : (x + y – 1)2 (2x + y – 3)3 = c 4. (x – y – 2)dx + (x – 2y – 3)dy = 0 dy − x + y + 2 = dx x − 2y − 3 Sol. Given equation is Let x = X + h, y = Y + k dy −(X + h) + (Y + k) + 2 −X + y + (k − h + 2) = = dx (X + h) − 2(Y + k) − 3 (X − 2Y) + (h − 2k − 3) Choose h and k so that: –h + k + 2 = 0, h – 2k – 3 = 0 h −1 −2 k −2 −3 I 1 1 −1 −2 h k 1 = = +3 − 4 −2 + 3 −2 + 1 h = 1, k = –1 www.sakshieducation.com www.sakshieducation.com dY − X + Y = dX X − 2Y Put Y = VX so that V+X X ∫ dY dV =V+X dX dX dV X(−1 + V) −1 + V = = dX X(1 − 2V) 1 − 2V dV −1 + V −1 + V − V + 2V 2 2V 2 − 1 = −V = = dX 1 − 2V 1 − 2V 1 − 2V (1 − 2V)dV 2V − 1 2 dX ∫ X =∫ = =∫ dX X 1 − (−4V) − 1 2 dV 1 − 2V 2 1 (−4VdV) dV −∫ ∫ 2 2 1 − 2V 1 − 2V 2 1 1 dV log | x |= − log |1 − 2V 2 | − ∫ 2 2 1 2 2 −V 2 1 +V 1 1 1 2 2 = − log |1 − 2V | − ⋅ log + log c 2 log | x |= − log |1 − 2V 2 | 1 2 2 2 −V 2 1 +V 1 2 − log + log C 1 1 − V 2 2 2 1 1+ V 2 log + log c 2 1− V 2 2 log | x | + log |1 − 2V 2 |= − log X 2 (1 − 2V 2 ) = − 1 X+Y 2 log + log c 2 X−Y 2 1/ 2 X−Y 2 log | X − 2Y |= log c X+Y 2 2 2 1/ 2 X−Y 2 ∴ X − 2Y = c X + Y 2 2 2 www.sakshieducation.com www.sakshieducation.com Substituting X = x–h = x – 1 , Y = y–k = y + 1 1/ 2 x − 1 − (y + 1) 2 (x − 1) − 2(y + 1) = c x − 1 + (y + 1) 2 2 2 1/ 2 x − y 2 −1 − 2 (x − 2y − 2x − 4y − 1) = c x + y 2 − 1 + 2 2 2 5. (x – y)dy = (x + y + 1) dx Sol. dy x + y + 1 = dx x−y x = X + h, y = Y + k dy X + h + Y + k + 1 (X + Y) + (h + k + 1) = = dx (X + h) − (Y + k) (X − Y) + (h − k) Choose h and k so that h + k + 1 = 0, h – k = 0 1 2 Solving h = − , k = − ∴ dY X + Y = dX X − Y Put Y = VX ⇒ V+X X ∴ 1 2 dY dV =V+X dX dX dV X(1 + V) = dX X(1 − V) dV 1 + V 1 + V − V + V2 1 + V2 = −V = = dX 1 − V 1− V 1− V (1 − V)dV 1+ V dV 2 = dX X 1 2VdV ∫ 1 + V2 − 2 ∫ 1 + V2 = ∫ dX X 1 tan −1 V − log(1 + V 2 ) = log x + log c 2 2 tan −1 V = log(1 + V) 2 + 2 log x + 2 log c = log c 2 x 2 (1 + V 2 ) www.sakshieducation.com www.sakshieducation.com y2 Y 2 tan −1 = log c 2 x 2 1 + 2 x X 1 y+ 2 = log c 2 (Y 2 + X 2 ) 2 tan −1 1 x+ 2 2 2 1 1 1 2y + 1 2 2 2 2 2 tan −1 = log c x + + y + = log c x + y + x + y + 2 2 2 2x + 1 6. (2x + 3y – 8)dx = (x + y – 3)dy Sol. dy 2x + 3y − 8 = dx x + y −3 x = X + h, y = Y + k so that dY dy = dX dx dY 2(X + h) + 3(Y + k) − 8 = dX (X + h) + (Y + k) − 3 (2X + 3Y) + (2h + 3k − 8) = (X + Y) + (h + k − 3) Choose h and k so that: 2h + 3k – 8 = 0, h + k – 3 = 0 h k −8 −3 3 1 I 2 1 3 1 h k 1 = = −9 + 8 −8 + 6 2 − 3 h = 1, k = 2 dY 2X + 3Y ∴ = dX X+Y Put Y = VX so that V+X = dY dV =V+X dX dX dV X(2 + 3V) dV 2 + 3V = ⇒X = −V dX X(1 + V) dX 1 + V 2 + 3V − V − V 2 2 + 2V − V 2 = 1+ V 1+ V www.sakshieducation.com www.sakshieducation.com (1 + V)dV ∫ 2 + 2V − V 2 = ∫ Consider dX X (1 + V)dV ∫ 2 + 2V − V 2 Let (1 + V) = A(2 – 2V) + B Equating the coefficients of V 1 = –2A ⇒ A = –1/2 Equating constants: 1 = 2A + B = –1 + B ⇒ B = 2 (1 + V)dV 1 (2 − 2V)dV dV ∫ 2 + 2V − V 2 = − 2 ∫ 2 + 2V − V 2 + 2∫ 2 + 2V − V 2 1 dV = − log(2 + 2V − V 2 ) + 2 ∫ 2 ( 3) 2 − (V − 1)2 1 1 3 + V −1 = − log(2 + 2V − V 2 ) + 2 log 2 2 3 3 − V +1 1 1 V + ( 3 − 1) = − log(2 + 2V − V 2 ) + log 2 3 − V + ( 3 + 1) Y + ( 3 − 1) 1 2Y Y 2 1 X = − log 2 + − log + Y 2 X X 2 3 − + 3 +1 X 1 1 Y + ( 3 − 1)X = − log(2X 2 + 2XY − Y 2 ) + log 2 3 Y − ( 3 + 1)Y 1 1 [Y + 3 − 1)X] ∴ log X + c = − log(2X 2 + 2XY − Y 2 ) + log 2 3 Y − ( 3 + 1)X 7. dy x + 2y + 3 = dx 2x + 3y + 4 Sol. Let x = X + h, y = Y + k so that dY dy = dX dx dY (X + h) + 2(Y + k) + 3 = dX 2(X + h) + 3(Y + k) + 4 (X + 2Y) + (h + 2k + 3) = (2X + 3Y) + (2h + 3k + 4) www.sakshieducation.com www.sakshieducation.com Choose h and k so that: h + 2k + 3 = 0, 2h + 3k + 4 = 0 h k 3 4 2 3 I 1 2 2 3 h k 1 = = 8−9 6− 4 3− 4 2 −1 h= = 1, k = = −2 −1 −1 dY X + 2Y = dX 2X + 3Y This is a homogeneous equation dY dV = V+X dX dX dV X(1 + 2V) V+X = dX X(2 + 3V) Y = VX ⇒ X dV 1 + 2V 1 + 2V − 2V − 3V 2 = −V = dX 2 + 3V 2 + 3V (2 − 3V)dV dX X 1 − 3V dV 1 −6VdV dX − ∫ =∫ 2∫ 2 2 2 1 − 3V X 1 − 3V 2 = 1 +V 2 dV 1 2 1 1 3 2 − log |1 − 3V | = log X + log c log − log |1 − 3V 2 |= log cx ∫ 2 1 1 3 1 2 3 2⋅ 2 −V 2 − V 3 3 3 1 3 3 log 1 + 3V log |1 − 3V 2 |= log cy 1 − 3V 3Y 1 1 3y 2 X log − log 1 − 2 = log cy 3 3 3Y 2 x 1− X 1+ 1 X + 3Y 1 X 2 − 3Y 2 log − log = log cx 3 X − 3Y 2 X2 Where X = x – 1, Y = y + 2 www.sakshieducation.com www.sakshieducation.com 1 log(X + 3Y) − log(X − 3) 3 1 − log(X + 3Y) + log(X − 3Y) − 2 log X 2 = log CX ( ) 1 1 log(X + 3Y) − − log(X − 3Y) 2 3 1 1 2+ + log X = log c + log X 3 2− 3 2+ 3 log(X + 3Y) log(X − 3Y) 2 3 2 3 = log c (2 − 3) (2 + 3) log(X + 3Y) 2 2 log(X − 3Y) = 3c′ where c′ = log c i.e. 8. dy 2x + 9y − 20 = dx 6x + 2y − 10 Sol. Given equation is dy 2x + 9y − 20 = dx 6x + 2y − 10 Let x = X + h, y = Y + k so that dY dy = dX dx dY 2(X + h) + 9(Y + k) − 20 = dX 6(X + h) + 2(Y + k) − 10 (2X + 9Y) + (2h + 9k − 20) = (6X + 2Y) + (6h + 2k − 10) Choose h and k so that: 2h + 9k – 20 = 0, 6h + 2k – 10 = 0 h 9 2 k −20 −10 I 2 6 9 2 h k 1 = = −90 + 40 −120 + 20 4 − 54 www.sakshieducation.com www.sakshieducation.com −50 −100 = 1, k = =2 −50 −50 dY 2X + 9Y ∴ = dX 6X + 2Y h= This is homogeneous equation dY dV =V+X dX dX dV x(2 + 9V) V+X = dX x(6 + 2V) y = VX ⇒ X dV 2 + 9V 2 + 9V − 6V − 2V 2 = −V = dX 6 + 2V 6 + 2V 6 + 2V ⋅ dY 2 + 3V − 2V 2 = dX X (6 + 2V)dV ∫ (1 + 2V)(2 − V) = ∫ Let dx x … (1) 6 + 2V A B = + (1 + 2V)(2 − V) 1 + 2V 2 − V 6 + 2V = A(2 – V) + B(1 + 2V) V = 2 ⇒ 10 = B(5) ⇒ B = 2 1 5 V = − ⇒ 5 = A ⇒ A = 2 2 2 6 + 2V 2 2 = + (1 + 2V)(2 − V) 1 + 2V 2 − V (6 + 2V)dV 2dV dV ∫ (1 + 2V)(2 − V) = ∫ 1 + 2V − 2∫ V − 2 = log(1 + 2V) − 2 log(V − 2) From (1) we get log(1 + 2V) − log(V − 2)2 = log X − log c 1 + 2V X 1 + 2V X log = log ⇒ = 2 2 c c (V − 2) (V − 2) X 2V x Y 1 + 2V = (V − 2)2 ⇒ 1 + = − 2 c X cX 2 X + 2Y x (Y − 2X)2 = X c X2 www.sakshieducation.com www.sakshieducation.com Solution is (X + 2Y) = (Y – 2X)2 Where X = x – 1, Y = y – 2 c(x – 1 + 2y – 4) = (y – 2 – 2x + 2)2 c(x + 2y – 5) = (y – 2x)2 = (2x – y)2 Linear Differential Equations Linear Equations: A differential equation of the form dy + Py = Q , where P and Q are functions of dx x only is called a linear differential equation of the first order in y. Bernoulli’s Equation: An equation of the form dy + Py = Qy n , where P and Q are functions of x dx only, is called a Bernoulli’s equation www.sakshieducation.com www.sakshieducation.com Very Short Answer Questions I. Find the I.F. of the following differential equations by transforming them into linear form. 1. x dy − y = 2x 2 sec2 2x dx Sol. x dy − y = 2x 2 sec2 2x dx dx 1 − y = 2x sec2 2x which is linear in y . dy x I.F. = e ∫ 2. y Sol. y pdx 1 1 = ∫ − log x = e− log x = elog(1/x) = x x e dx − x = 2y3 dy dx dx 1 − x = 2y3 ⇒ − x = 2y 2 which is linear equation in x. dy dy y 1 I.F. = e ∫ pdy =e ∫ − y dy = e− log y = elog(1/ y) = 1 y www.sakshieducation.com www.sakshieducation.com Short Answer Questions Solve the following differential equations. 1. dy + y tan x = cos3 x dx Sol. dy + y tan x = cos3 x which is linear d.eq. in y. dx I.F. = e ∫ p dx = e∫ tan x dx = elog(sec x) = sec x Solution of the equation is y. I.F. = y.I.F = ∫ Q. I.F. dx ⇒ y sec x = ∫ sec x cos3 x dx = ∫ cos 2 x dx = 1 (1 + cos 2x)dx = 2∫ 1 sin 2x x+ +c 2 2 2y = x + sin x ⋅ cos x + c cos x Solution is: 2y = x cos x + sin x ⋅ cos2 x + c ⋅ cos x 2. dy + y sec x = tan x dx Sol. dy + y sec x = tan x which is l.d.e. in y dx I.F. = e ∫ Sol is sec xdx = elog(sec x + tan x) = sec x + tan x y.I.F. = y.I.F = ∫ Q. I.F. dx y(sec x + tan x) = ∫ tan x(sec x + tan x)dx = ∫ (sec x ⋅ tan x + tan 2 x)dx = ∫ (sec x ⋅ tan x + sec2 x − 1)dx Solution is www.sakshieducation.com www.sakshieducation.com y(sec x + tan x) = sec x + tan x − x + c 3. dy − y tan x = e x sec x Which is l. d.e. in y. dx − tan x dx Sol. I.F. = e ∫ = elog cos x = cos x Sol is y.I.F. = y.I.F = ∫ Q. I.F. dx y cos x = ∫ e x sec x cos xdx = ∫ e x dx = e x + c 4. x dy + 2y = log x dx 2 Sol. I.F. = e ∫ x dx 2 = e2log x = elog x = x 2 Solution is: ∴ y ⋅ x2 = ∫ x2 log x dx = ∫ x log xdx x x2 1 x2 x2 1 x2 1 log x − +c = log x − ∫ x 2 dx = log x − ∫ x dx = 2 2 2 4 x 2 2 5. (1 + x 2 ) −1 dy + y = e tan x dx −1 dy 1 e tan x Sol. + ⋅ = which linear differential equation in y. y dx 1 + x 2 1+ x2 I.F. = e Sol is y⋅e ∫ pdx dx =e ∫ 1+ x 2 = e tan −1 x y.I.F. = y.I.F = ∫ Q. I.F. dx tan −1 x Consider =∫ ∫ (e tan −1 x 2 ) 1+ x (e tan −1 2 dx x 2 1+ x2 ) dx … (1) put tan −1 x = t ⇒ dx 1+ x2 = dt www.sakshieducation.com www.sakshieducation.com e 2t e2 tan = ∫ (e ) dt = ∫ e dt = = 2 2 t 2 −1 2t Solution is y ⋅ e 2y ⋅ e tan −1 x tan −1 x = e 2 tan e2 tan = 2 −1 x −1 x + x c 2 +c 6. dy 2y + = 2x 2 dx x Sol. dy 2y + = 2x 2 which is l.d.e. in y. dx x 2 I.F. = e ∫ x dx Sol is 2 = e2log x = elog x = x 2 y.I.F. = y.I.F = ∫ Q. I.F. dx y ⋅ x 2 = ∫ 2x 4dx = 7. 2x 5 +c 5 dy 4x 1 + y= 2 dx 1 + x (1 + x 2 ) 2 4x Sol. I.F. = e ∫ 1+ x 2 dx = e2log(1+ x = elog(1+ x 2 2 ) 2 ) = (1 + x 2 )2 ∴ Solution is y(1 + x 2 ) 2 = ∫ dx = x + c dy + y = (1 + x)e x dx 8. x Sol. dy 1 (1 + x)e x + ⋅y = dx x x 1 I.F. = e ∫ x dx = elog x = x y ⋅ x = ∫ (1 + x)e x dx = x ⋅ e x + c www.sakshieducation.com www.sakshieducation.com 9. dy 3x 2 1+ x2 + y= dx 1 + x 3 1 + x3 Sol. dy 3x 2 1+ x2 + y = which is linear differential equation in y . dx 1 + x 3 1 + x3 3x 2 I.F. = e Sol is ∫ 1+ x 3 dx = elog(1+ x ) = 1 + x 3 3 y.I.F. = y.I.F = ∫ Q. I.F. dx x3 +c 3 y(1 + x 3 ) = ∫ (1 + x 2 )dx = x + 10. dy − y = −2e− x dx Sol. I.F. = e ∫ − dx = e− x y ⋅ e− x = −2∫ e −2x dx = e−2x + c y = e − x + ce x 11. (1 + x 2 ) Sol. dy + y = tan −1 x . dx dy 1 tan −1 x + ⋅ y = which is linear differential equation in y. dx 1 + x 2 1+ x2 dx I.F. e Sol is y⋅e ∫ 1+ x 2 = e tan −1 x y.I.F. = y.I.F = ∫ Q. I.F. dx tan −1 x = ∫ tan −1 x e tan −1 x 1+ x2 Put t = tan–1x so that dt = dx dx 1+ x2 R.H.S. = ∫ t ⋅ e t dt = t ⋅ e t − ∫ e t dt = t ⋅ e t − e t Solution is: y.e tan −1 x = e tan −1 x (tan −1 x − 1) + c www.sakshieducation.com www.sakshieducation.com y = tan −1 x − 1 + c ⋅ e − tan 12. −1 x dy + y tan x = sin x . dx Sol. I.F. = e ∫ tan x dx = elog sec x = sec x y sec x = ∫ sin x ⋅ sec x dx = ∫ tan x dx = log sec x + c Long Answer Questions Solve the following differential equations. dy + y sin x = sec 2 x dx 1. cos x Sol. dy + tan x ⋅ y = sec3 x which is l.d.e in y dx I.F. = e ∫ Sol is tan x dx = elog sec x = sec x y.I.F. = y.I.F = ∫ Q. I.F. dx y ⋅ sec x = ∫ sec 4 xdx = ∫ (1 + tan 2 x) sec2 xdx = tan x + tan 3 x +c 3 2. sec x ⋅ dy = (y + sin x)dx Sol. dy y + sin x = = y cos x + sin x ⋅ cos x dx sec x dy − y cos x = sin x ⋅ cos x which is l..d.e in y dx − cos xdx I.F. = e ∫ = e − sin x Sol is y.I.F. = y.I.F = ∫ Q. I.F. dx y ⋅ e− sin x = ∫ e− sin x ⋅ sin x ⋅ cos x ⋅ dx www.sakshieducation.com www.sakshieducation.com Consider ∫ e − sin x ⋅ sin x ⋅ cos x ⋅ dx t = – sin x ⇒ dt = –cos x dx ∫e − sin x ⋅ sin x ⋅ cos x dx = + ∫ e t ⋅ t dt = t ⋅ e t − e t + c = e − sin x (− sin x − 1) + c y ⋅ e− sin x = −e− sin x (sin x + 1) + c or y = −(sin x + 1) + c ⋅ esin x dy + y = 2 log x dx 3. x log x ⋅ Sol. dy 1 2 + y= dx x log x x dx I.F. = e ∫ x log x y log x = 2 ∫ = elog(log x) = log x log x dx = (log x)2 + c x (x + y + 1) dy =1 dx Sol. (x + y + 1) dy =1 dx 4. dx dx = x + y +1 ⇒ − x = y + 1 which is l.d.e in x. dy dy I.F. = e ∫ pdy = e∫ − dy = e− y sol is x.I.F.= ∫ Q.IFdy x ⋅ e − y = ∫ e − y (y + 1)dy = −(y + 1)e− y + ∫ e− y dy = −(y + 1)e− y − e− y = −(y + 2)e− y + c x = −(y + 2) + c ⋅ e y www.sakshieducation.com www.sakshieducation.com dy − y = x 3 (x − 1)3 . dx 5. Solve x(x − 1) Sol. dy 1 − y = x 2 (x − 1) 2 which is l.d.e in y dx x(x − 1) 1 dx I.F. = e =e =e ∫ − x(x −1) log x −log(x −1) Sol is y⋅ ∫ pdx =e log =e x x −1 1 ∫ x − x −1 = dx x x −1 y.I.F. = y.I.F = ∫ Q. I.F. dx x x = ∫ x 2 (x − 1)2 dx = ∫ x 3 (x − 1)dx x −1 (x − 1) Hence solution is xy x5 x 4 = − +c x −1 5 4 dy =y dx 6. (x + 2y3 ) Sol. dy x + 2y3 x = = + 2y 2 dx y y dx 1 − x = 2y 2 dy y 1 I.F. = e x⋅ ∫ − y dy = e − log y = elog1/ y = 1 y 1 = 2ydy = y 2 + c y ∫ Solution is: x = y(y 2 + c) 7. Solve (1 − x 2 ) Sol. dy + 2xy = x 1 − x 2 . dx dy 2x x + y = dx 1 − x 2 1 − x2 2x I.F. = e ∫ 1− x 2 dx = e − log(1− x 2 ) www.sakshieducation.com www.sakshieducation.com = elog(1− x y 1− x 2 2 −1 ) = 1 1− x2 xdx =∫ (1 − x ) 2 3/ 2 = (1 − x 2 ) −1/ 2 + c (or)y = 1 − x 2 + c(1 − x 2 ) dy − (x − 2)y = x 3 (2x − 1) dx 8. x(x − 1) Sol. dy x−2 x 3 (2x − 1) − y= dx x(x − 1) x(x − 1) 2− x ∫ x(x −1) 2−x A B = + x(x − 1) x x − 1 2 − x = A(x − 1) + Bx x = 0 ⇒ 2 = − A ⇒ A = −2 x =1⇒1= B ⇒ B =1 I.F. = e dx ⇒ 2−x −2 1 = + x(x − 1) x x + 1 2−x dx dx ∫ x(x − 1) dx = −2∫ x + ∫ x − 1 = − log x + log(x − 1) = log I.F. = e y x −1 x2 log x −1 x2 =∫ = x −1 x2 x −1 x2 x 3 (2x − 1) x − 1 ⋅ dx x(x − 1) x 2 = ∫ (2x − 1)dx = x 2 − x + c Solution is y(x – 1) = x2(x2 – x + c) www.sakshieducation.com www.sakshieducation.com 9. dy 2 3 (x y + xy) = 1 dx Sol. dy 2 3 (x y + xy) = 1 dx dx = xy + x 2 y3 dy ⇒ dx − xy = x 2 y3 ---- (1) dy Which is Bernoulli’s equation Dividing with x2, 1 dx 1 − y = y3 2 dy x x 1 x Put z = − so that ⇒ dz 1 dx = dy x 2 dy dz + z ⋅ y = y3 ----2) dy Which is linear diff.eq. in z I.F. = e ∫ ydy = ey 2 /2 Sol is z.I.F = ∫ Q. I.F. dy z ⋅ ey 2 /2 = ∫ y 3e y 2 /2 ⋅ dy put = ∫ t ⋅ dt ⋅ e = e (t − 1) = e t z ⋅ ey z= 2 /2 = ey t 2 y2 = t ⇒ y dy = dt 2 y 2 /2 y2 − 1 2 /2 y2 − 1 + c 2 2 2 y2 1 y2 − 1 + c ⋅ e− y /2 ⇒ − = − 1 + c ⋅ e− y /2 2 x 2 y2 2 −1 = x − 1 + c ⋅ e − y /2 2 www.sakshieducation.com www.sakshieducation.com y2 Hence solution is 1 + x 2 10. Sol. − 1 + c ⋅ e− y 2 /2 = 0 dy + x ⋅ sin 2y = x 3 cos 2 y dx 1 dy 2sin y cos y + x = x3 2 dx cos y cos y 2 sec2 y dy + 2 tan y.x = x 3 dx z = tan y ⇒ dz dy = sec 2 y dx dx dz + 2zx = x 3 dx I.F. = e ∫ 2xdx 2 = ex 2 2 z ⋅ e x = ∫ x 3 ⋅ e x dx ...(1) 2 Consider ∫ x 3 ⋅ e x dx t = x 2 ⇒ dt = 2x ⋅ dx 2 2 3 x 2 x ∫ x ⋅ e dx = ∫ x ⋅ x ⋅ e dx = 1 1 t ⋅ e t dt = e t (t − 1) ∫ 2 2 2 = z ⋅ ex = z= 1 x2 2 e (x − 1) + c 2 2 x2 −1 + c ⋅ e− x 2 tan y = 2 x 2 −1 + c ⋅ e− x 2 www.sakshieducation.com www.sakshieducation.com 1 dy 11. y 2 + x − = 0 y dx Sol. 1 dy y2 + x − =0 y dx 1 dy = − y2 x− y dx dx x − 1/ y x 1 = =− 2 + 3 2 dy −y y y dx 1 1 + 2 ⋅ x = 3 Which is l.d.e in x dy y y 1 I.F. = e ∫ y2 dy = e−1/y Sol is x.I.F = ∫ Q. I.F. dy x ⋅ e −1/ y = ∫ e −1/ y y3 dy put − … (1) 1 1 = z ⇒ 2 dy = dz y y = ∫ z ⋅ ez dz = ez (z − 1) 1 x ⋅ e −1/y = −e−1/y − − 1 + c y x 1/ y e = 1+ y y ⋅ e1/y +c Hence solution is xy = 1 + y + cy e1/y. www.sakshieducation.com www.sakshieducation.com Problems for Practice 1 . Form the differential equation corresponding to the family of circles passing through the origin and having centers on Y-axis. Ans. (x 2 − y 2 ) 2. Solve dy − 2xy = 0 dx dy = sin(x + y) + cos(x + y) dx Ans. x = log 1 + tan x+y +c 2 y x 3. Give the solution of x sin 2 dx = ydx − xdy which passes through the point (1, π/4). Ans. cot y = log x + 1 x ( 4. Solve 2x − 10y3 dy +y=0 ) dx 2 Ans. I.F. = e ∫ y dy ( 2 = e2log y = elog y = y 2 5. Solve 1 + x 2 dy + 2xy − 4x ) dx Ans. y(1 + x 2 ) = ∫ 4x 2 dx = 6. Solve 2 =0 4x 3 +c 3 2 1 dy ⋅ + y ⋅ e x = e(1− x)e . x dx Ans. 2y ⋅ e(x −1)e = x 2 + 2c x www.sakshieducation.com www.sakshieducation.com 7. Solve sin 2 x ⋅ dy + y = cot x . dx Ans. y ⋅ e− cot x = (cot x + 1)e− cot x + c 8. Find the equation of the equation x(x − 2) dy − 2(x − 1)y = x 3 (x − 2) which satisfies the dx condition that y = 9 when x = 3. Ans. y = x + 2 log(x − 2) x(x − 2) 9. Solve (1 + y 2 )dx = (tan −1 y − x)dy . Ans. x ⋅ e tan −1 y = e tan −1 y (tan −1 y − 1) + c . 10. Solve (x 3 − 3xy 2 )dx + (3x 2 y − y3 )dy = 0 . y2 Ans. x2 y2 x2 −1 = cx +1 www.sakshieducation.com