Download Some trigonometric identities Periodicity: sinx, cosx have period 2π

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Some trigonometric identities
Periodicity: sin x, cos x have period 2π;
tan x, cot x have period π
Symmetry: cos is an even function, sin, tan, cot are odd.
Turning sin to cos:
sin( π2 − x) = cos x
cos( π2 − x) = sin x
Relating tan and sec: 1 + tan2 x = sec2 x , 1 + cot2 x = csc2 x
Expanding sums:
sin(x ± y) = sin x cos y ± cos x sin y
Products to sums:
cos(x ± y) = cos x cos y ∓ sin x sin y
,
x+y
x−y
1
sin
+ sin
sin x cos y =
2
2
2
1
y+x
y−x
1
y+x
y−x
cos x cos y =
cos
+ cos
, sin x sin y =
cos
− cos
2
2
2
2
2
2
Expand double angle:
cos(2x) = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x
sin(2x) = 2 sin x cos x ,
or the other way around, go to double angle by
sin x cos =
1
sin(2x) ,
2
cos2 x =
1 + cos(2x)
2
,
sin2 x =
1 − cos(2x)
2
Some integrals:
Z
sec x dx = ln | sec x + tan x| + C
Z
,
csc x dx = − ln | csc x + cot x| + C
Derivatives of inverse trigonometric functions:
d
1
arcsin x = √
dx
1 − x2
,
d
1
arccos x = − √
dx
1 − x2
,
d
1
arctan x =
dx
1 + x2
Hyperbolic functions
Definitions:
sinh x =
ex − e−x
2
,
cosh x =
ex + e−x
2
Relations:
d
sinh x = cosh x ,
dx
cosh2 x − sinh2 x = 1 ,
sinh−1 x = ln x +
√
1 + x2
,
d
cosh x = sinh x
dx
d
1
sinh−1 x = √
dx
1 + x2
Related documents