Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Solution Set 7 7.1 Determine the phase angles by which v1(t) leads i1(t) and v1(t) leads i2(t), where: v1(t) = 6 sin (377t + 25o) V i1(t) = 0.04 cos (377t – 10o) A i2(t) = -0.2 sin (377t – 75o) A Solution: i1(t) = 0.04 cos (377t – 10o) A = 0.04 sin (377t – 10o + 90o) A = 0.04 sin (377t + 80o) A It means that v1(t) leads i1(t) by 25o – 80o = -55o i2(t) = -0.2 sin (377t – 75o) A = 0.2 sin (377t – 75o + 180o) A = 0.2 sin (377t + 105o) A It means that 25o – 105o = -80o 7.2 Calculate i(t), the time-domain current in the resistor in the following circuit if the input voltage is: a) v1(t) = 12 cos (377t + 180o) V b) v2(t) = 16 cos (377t + 45o) V Solution: This is a purely resistive network: i(t) and v(t) are in phase 1) i1(t) = v1(t) / R = 2) i1(t) = v2(t) / R = !" !"#!!""!!!"#! ! ! !" !"#!!""!!!"! ! ! A = 3 cos(377t + 180o) A A = 4 cos(377t + 45o) A 7.3 Calculate i(t), the time-domain current in the capacitor shown in the following circuit if the voltage is: a) v1(t) = 8 cos (377t – 30o) V b) v2(t) = 4 cos (377t + 60o) V Solution: This is a purely capacitive network: i(t) leads v(t) by 90o. ! ! !! !" ! , however, this equation can be rewritten as I= !"#$ (eq. 7.29 Irwin) !" 1) I1 = !"# !" ! !"! !, where v1(t) = 8 cos (377t – 30o) V I1 = 377*1440*10-6 ! 90o * !" ! !"! A = 4.34 ! 60o A i1(t) = 4.34 cos (377t + !"! ) 2) I2 = !"# !"!!"! !, where v2(t) = 4 cos (377t + 60o) V I2 = 377*1440*10-6 ! 90o *!"!!"! A =2.17!!!"#! i2(t) = 2.17 cos (377t + !"#! ) 7.4 Calculate i(t), the time-domain current in the inductor in the following circuit for the following voltage inputs: a) v1(t) = 24 cos (377t + 12o) V b) v2(t) = 18 cos (377t + 48o) V Solution: This a purely inductive network: i(t) lags v(t) by 90o !" ! ! ! ! !! !" This can be simplified to V= !"#$ 1) v1(t) = 24 cos (377t + 12o) V !! !! !"#!"! ! ! !" !"! ! !"! ! !" ! !"! !"# !"" ! !"!!" ! !"!! !!"! i1(t) = 6 cos (377t - !"! ) A 2) v2(t) = 18 cos (377t + 48o) V !! !! !"#!"! ! ! !!!! !"! ! !"! ! !!!! ! !"! !"# !"" ! !"!!" ! !"!! !!"! i2(t) = 4.5 cos (377t - !"!) A 7.5 Find the frequency-domain impedance, Z, of the following network: Solution: This is a series RLC network: Impedance Z Z R Z C Z L Z ZR ZC ZL Z 3.0480.54$ 0.5: j 2: j 5: 0.5 j 3(:) 0.52 32 tan 1 ( 3 ) 0.5 3.0480.54$ 7.6 Find the frequency-domain impedance Z of the following network: Solution: This is a Parallel RLC network 1 1 1 Impedance Z ( ) 1 ZR ZC ZL 1 1 1 1 1 j 0.25 j 0.5 1 j 0.25 Z 1: j 4: j 2: 1 1 1 Z : :| : 0.9714.04$ : $ 2 1 1 j 0.25 1.03 14.04 1 (0.25) tan (0.25 / 1) Z 0.9714.04$ : or Z 1 Y | 1.03 14.04$ 7.7 The voltages vR (t ) and v L (t ) in the following circuit can be redrawn as phasors in a phasor diagram. Use a phasor diagram to show that vR (t ) v L (t ) vs (t ) where vs (t ) 120 cos(377t )V Solution: Vs 1200q I 11.79 10.67 $. R jZL 10 j (377 u 5m) VL jZLI 377 * 5 *103 90$ *11.79 10.67$ 22.2279.33$ v L (t ) 22.22 cos(377t 79.33$ )V Solution Set 7 Rev05_2011 Page 3 | 7 ' tan 1 ( VL 22.22 ) tan 1 10.67 117.9 VR VS 2 VR 2 V L 2 117.9 2 22.22 2 14394.14 VS VS 120 VR ' 10.67 10.67 0 7.8 The currents i R (t ) and i C (t ) in the following circuit can be drawn as phasors in a phasor diagram. Use such a phasor diagram to show that i C (t ) i R (t ) i s (t ) where: is (t ) 20 cos(377t 30$ ) A Solution: This is a parallel network: 1 1 Zc j13.26 13.26 90 jZ C j *377*200*106 Using a current divider, ZC 13.26 90 IR IS * 2030 ZR ZC 2 j13.26 13.26 90 13.26 20 30 90 81.42 13.41 81.42 13.41 19.7821.42 ZR 2 2030 IC IS * 13.41 81.42 ZR ZC 2030 20 Is 2 30 81.42 13.41 Ic 2 I R 2 19.782 2.982 Solution Set 7 Rev05_2011 20; Page 4 | 7 'L I S tan 1 ( IC 2.98 ) tan 1 ( ) 8.57 19.78 IR I R 'L 21.42$ 8.57$ | 29.9 | 30$ 7.9 The currents i L (t ) and i C (t ) of the inductor and capacitor, respectively, in the following circuit can be drawn as phasors in a phasor diagram. Show in the phasor diagram that i L (t ) i C (t ) i S (t ) where: vs (t ) 10 cos(103 t 30$ )V Solution: Zx is a parallel network Z x Z L || Z C 1 Z C 1/ jZ C j103 6 3 j10 *10 ZL jZ L j103 (10*103 ) j10 Z C * Z L j103 * j10 j10.1 Z L Z C j103 j10 Voltage divider: ZX j10.1 1030 Va Vs 1 j10.1 Z X ZR Zx 1030 10.190 10.1584.35 9.9535.65 Solution Set 7 Rev05_2011 Page 5 | 7 V ZL IL 9.9535.65 j10 Ic V / Z C 9.9535.65 0.995 54.35 ( A) 1090 1 1 9.9535.65 ( ) 9.9535.65 ( 3 ) 3 j10 10 90 9.95*103 125.65 Is 0.995 54.35 9.95*103 125.65 0.995 54.35 9.95*103 54.35 0.985 54.35 Verification: Vs 1030 10 cos 30 j10sin 30 8.66 j 5.00 Va 9.9535.65 8.09 j 5.80 Vs Va 8.66 j 5.0 _(8.09 j 5.8) Is R 1 0.982 54.53 0.57 0.8 j Isphasor = Iscalculated 7.10. Repeat 7.9 for vs (t ) 10 cos(10 4 t 30$ )V VXUSULVLQJUHVXOWFDOOHGµUHVRQDQFH¶ Solution: ZC 1/ jZ C ZL jZL 1 j10 *10 6 4 j10 4 (10 *10 3 ) Solution Set 7 Rev05_2011 j100 j100 Page 6 | 7 j100 * j100 10 4 j f j100 j100 0 Zx 1 Voltage divider: Va Vs Vs Zx ZR 1 Z R / Z x Va Vs LC is in resonance ZX Zc * ZL ZC ZL Vs (1/(1 0)) This is very large impedance (Zx) ±it is like an open circuit Since Va Vs there is no current through the resistor 1030$ 1030$ I L Vs / Z L 0.1 60$ j100 10090$ IC Vs / Z C 1030$ j100 1030$ 100 90$ 0.1 120$ Vs Va ( A) 0 / R( A) 0( A) R Note: the currents are identical in magnitude, but 180º out of phase. This means the Is is zero. This is the same value as the current which passes through the resistor. The currents flow between L and C, but never escape the resonant network. The energy is exchanged between the electric field of the capacitor and the magnetic field of the inductor. Is Solution Set 7 Rev05_2011 Page 7 | 7