Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Summer Review for Students Entering Algebra 2 Honors Name: ________________________ Class: ___________________ Date: __________ ID: A Honors Algebra 2 Addendum to Summer Packet These problems are for students entering Algebra 2 Honors only. Show all work in the space provided. 1. Evaluate 3x − y if x = 5 and y = −3 3(x − y) 5. Express algebraically and solve: The product of 3 and a number, decreased by 8, is the same as twice the number, increased by 15. Find the number. 2. Multiply (−x)(−3y)(−5z) 3. Solve 3(x + 2) = 1 (12x + 4) − 5x 4 . . 6. Use an algebraic process to find four consecutive odd integers whose sum is 464. 4. Solve the equation. y+1 2 1 y + (y − 4) = 5 2 4 . . 1 Name: ________________________ ID: A Ê 2y ˆ Ê y ˆ Ê y + 3 ˆ˜ ˜˜ 7. Simplify: ÁÁÁ x ˜˜˜ ÁÁÁ 2x ˜˜˜ ÁÁÁ x Ë ¯Ë ¯Ë ¯ 11. Expand (3x − 7) 2 . 8. 5x −3 y 2 x 5 y −1 z 0 ⋅ (2xy 3 ) −2 xy . 12. Multiply ÁÊÁ x 2 + x − 3 ˜ˆ˜ ÁÊÁ 3x 2 − x + 3 ˜ˆ˜ Ë ¯Ë ¯ . 9. Subtract (−3g 2 + 2g − 9) from (g 2 − 4g − 6) . 13. Simplify . 10. Multiply (6n − 3)(5n − 7) . . 2 18xy 3 7a 2 b 2 ÷ 12x 2 y 35a 2 b Name: ________________________ ID: A 15. Factor completely 14. Factor completely a) −5x 4 y 2 + 20xy 3 + 15xy 4 a) a 2 − 6a − 40 b) 6y 2 + 13y − 5 b) 3x 3 + x 2 − 15x − 5 c) 12m3 n − 75mn c) 20x 2 − 125y 2 d) 49x 2 − 100y 2 d) 4x 2 − 12xy + 9y 2 e) 6xp + 42x − 5yp − 35y . 3 Name: ________________________ ID: A 17. Solve the equation. 16. Solve each equation: |3x − 5| = 7 a) n(9 − 3n)(2n + 5) = 0 b) x 2 + 8x − 20 = 0 . 18. Solve the inequality. Graph the solution on a number line. |3x + 9| ≥ 6 c) 20x(x − 1) = 42 − 9x d) −8x 2 + 46x − 30 = 0 . 19. Solve and graph your answer on a real number line: |x − 3 | − 2 < 6 e) 3x 2 − 6x = 10 4 Name: ________________________ 20. Simplify ID: A 23. 6y + 30 Find the value of x in each problem. 2 y − 25 a) . 21. Simplify a2 − x2 a ⋅ 2 3x − 3a a b) . . 22. Find the value of x. Then, find the perimeter of the triangle. 24. The area of a triangle is 72 in2 and the base is 8 in. Find the height. . 5 Name: ________________________ ID: A 26. Find the slope of: 25. Graph the line of each equation: a) x + 3y = 6 a) a line passing through (-4, 4) and (2, -5) b) a line parallel to y = 2x + 7 c) the line whose equation is 2x − 3y = 12 b) y = −2x + 4 d) the line whose equation is y = −5 e) a line perpendicular to 6x + 5y = 9 . 27. Determine whether the lines are parallel, perpendicular, or neither. Explain your reasoning. c) x = 3 2x + 3y = 12 3x + 2y = 24 6 Name: ________________________ ID: A 30. Solve the system of equations by graphing. 28. Find an equation, in point-slope form, of the line that satisfies the given conditions. 2x + 3y = −27 11x − 3y = −12 Through (–1, –11); perpendicular to the line passing through (3, 1) and (7, –1). Then, rewrite the equation in standard form. . 29. Solve the system of equations by substitution 8x − 2y = 10 3x − y = 9 . 31. Solve the system of equations by elimination 2x − 3y = 6 9y − 6x = 9 7 Name: ________________________ ID: A 34. Express algebraically and solve: 32. Solve they system of equations by any method. 0.6x + 1.6y = 2.8 An orange has 15 calories more than a grapefruit. Twenty oranges and ten grapefruits have 1800 calories together. Jim ate three oranges and half a grapefruit. How many calories did Jim eat? −0.05x + 0.08y = −0.02 . 33. Solve the system of equations by any method. . 5 1 2 x+ y= 6 4 3 35. Find the solution set for the following system of inequalities. 1 −1 1 x− y= 10 10 5 x + 2y ≤ −4 3x − 2y > −4 . 8 ID: A Honors Algebra 2 Addendum to Summer Packet Answer Section CASE 1. 3 / 4 2. −15xyz 3. x = −1 45 4. y = 13 5. n = 23 6. 113, 115, 117, 119 7. 2x 8. 4y + 3 5 11 4x y 4 9. 4g 2 − 6g + 3 10. 30n 2 − 57n + 21 11. 9x 2 − 42x + 49 12. 3x 4 + 2x 3 − 7x 2 + 6x − 9 15y 2 2bx 14. a) (a − 10) (a + 4) b) ÁÊË 3y − 1 ˜ˆ¯ ÁÊË 2y + 5 ˜ˆ¯ 13. c) 3mn (2m − 5) (2m + 5) d) ÊÁË 7x − 10y ˆ˜¯ ÊÁË 7x + 10y ˆ˜¯ e) ÊÁË 6x − 5y ˆ˜¯ ÊÁË p + 7 ˆ˜¯ Ê ˆ 15. a) 5x ⋅ y 2 ⋅ ÁÁ −x 3 + 4y + 3y 2 ˜˜ Ë ¯ ÊÁ 2 ˆ˜ b) (3x + 1) ⋅ Á x − 5 ˜ Ë ¯ c) 5(2x − 5y) ⋅ (2x + 5y) 2 d) ÊÁË 2x − 3y ˆ˜¯ −5 16. a) n = 0, 3, or 2 b) x = −10, 2 6 7 c) x = − ,x = 5 4 3 d) x = 5 or 4 e) x = 3± 39 3 1 ID: A 2 3 18. x ≤ −5 or x ≥ −1 17. x = 4,x = − 19. −5 < x < 11 20. 21. 22. 23. 24. 25. 6 y−5 a+x −3a x=12 P=102 a) x = 8 b) x = 4 5 h = 18in a) 26. a) − 3 2 b) 2 b) c) 2 3 d) 0 e) c) 5 6 −2 −3 , m2 = 3 2 Since these slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular. 28. y + 11 = 2(x + 1) 27. m1 = 2x − y = 9 29. (-4, -21) 2 ID: A 30. ÊÁË −3, − 7 ˆ˜¯ 31. 32. 33. No solution. (2, 1) ÊÁ −4, − 7 ˆ˜ Ë ¯ 34. 220 calories 35. 3