Download Honors Algebra 2 Summer Work

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Summer Review
for Students
Entering
Algebra 2 Honors
Name: ________________________ Class: ___________________ Date: __________
ID: A
Honors Algebra 2 Addendum to Summer Packet
These problems are for students entering Algebra 2 Honors only.
Show all work in the space provided.
1. Evaluate
3x − y
if x = 5 and y = −3
3(x − y)
5. Express algebraically and solve:
The product of 3 and a number, decreased by 8,
is the same as twice the number, increased by
15. Find the number.
2. Multiply (−x)(−3y)(−5z)
3. Solve 3(x + 2) =
1
(12x + 4) − 5x
4
.
.
6. Use an algebraic process to find four consecutive
odd integers whose sum is 464.
4. Solve the equation.
y+1
2
1
y + (y − 4) =
5
2
4
.
.
1
Name: ________________________
ID: A
Ê 2y ˆ Ê y ˆ Ê y + 3 ˆ˜
˜˜
7. Simplify: ÁÁÁ x ˜˜˜ ÁÁÁ 2x ˜˜˜ ÁÁÁ x
Ë ¯Ë
¯Ë
¯
11. Expand (3x − 7) 2
.
8.
5x −3 y 2
x 5 y −1 z 0
⋅
(2xy 3 ) −2
xy
.
12. Multiply
ÁÊÁ x 2 + x − 3 ˜ˆ˜ ÁÊÁ 3x 2 − x + 3 ˜ˆ˜
Ë
¯Ë
¯
.
9. Subtract (−3g 2 + 2g − 9) from (g 2 − 4g − 6)
.
13. Simplify
.
10. Multiply (6n − 3)(5n − 7)
.
.
2
18xy 3
7a 2 b 2
÷
12x 2 y
35a 2 b
Name: ________________________
ID: A
15. Factor completely
14. Factor completely
a) −5x 4 y 2 + 20xy 3 + 15xy 4
a) a 2 − 6a − 40
b) 6y 2 + 13y − 5
b) 3x 3 + x 2 − 15x − 5
c) 12m3 n − 75mn
c) 20x 2 − 125y 2
d) 49x 2 − 100y 2
d) 4x 2 − 12xy + 9y 2
e) 6xp + 42x − 5yp − 35y
.
3
Name: ________________________
ID: A
17. Solve the equation.
16. Solve each equation:
|3x − 5| = 7
a) n(9 − 3n)(2n + 5) = 0
b) x 2 + 8x − 20 = 0
.
18. Solve the inequality. Graph the solution on a
number line.
|3x + 9| ≥ 6
c) 20x(x − 1) = 42 − 9x
d) −8x 2 + 46x − 30 = 0
.
19. Solve and graph your answer on a real number
line: |x − 3 | − 2 < 6
e)
3x 2 − 6x = 10
4
Name: ________________________
20. Simplify
ID: A
23.
6y + 30
Find the value of x in each problem.
2
y − 25
a)
.
21. Simplify
a2 − x2
a
⋅
2
3x − 3a
a
b)
.
.
22. Find the value of x. Then, find the perimeter of
the triangle.
24. The area of a triangle is 72 in2 and the base is 8
in. Find the height.
.
5
Name: ________________________
ID: A
26. Find the slope of:
25. Graph the line of each equation:
a) x + 3y = 6
a) a line passing through (-4, 4) and (2, -5)
b) a line parallel to y = 2x + 7
c) the line whose equation is 2x − 3y = 12
b) y = −2x + 4
d) the line whose equation is y = −5
e) a line perpendicular to 6x + 5y = 9
.
27. Determine whether the lines are parallel,
perpendicular, or neither. Explain your reasoning.
c) x = 3
2x + 3y = 12
3x + 2y = 24
6
Name: ________________________
ID: A
30. Solve the system of equations by graphing.
28. Find an equation, in point-slope form, of the line
that satisfies the given conditions.
2x + 3y = −27
11x − 3y = −12
Through (–1, –11); perpendicular to the line
passing through (3, 1) and (7, –1).
Then, rewrite the equation in standard form.
.
29. Solve the system of equations by substitution
8x − 2y = 10
3x − y = 9
.
31. Solve the system of equations by elimination
2x − 3y = 6
9y − 6x = 9
7
Name: ________________________
ID: A
34. Express algebraically and solve:
32. Solve they system of equations by any method.
0.6x + 1.6y = 2.8
An orange has 15 calories more than a
grapefruit. Twenty oranges and ten grapefruits
have 1800 calories together. Jim ate three
oranges and half a grapefruit. How many
calories did Jim eat?
−0.05x + 0.08y = −0.02
.
33. Solve the system of equations by any method.
.
5
1
2
x+ y=
6
4
3
35. Find the solution set for the following system of
inequalities.
1
−1
1
x−
y=
10
10
5
x + 2y ≤ −4
3x − 2y > −4
.
8
ID: A
Honors Algebra 2 Addendum to Summer Packet
Answer Section
CASE
1. 3 / 4
2. −15xyz
3. x = −1
45
4. y =
13
5. n = 23
6. 113, 115, 117, 119
7. 2x
8.
4y + 3
5
11
4x y 4
9. 4g 2 − 6g + 3
10. 30n 2 − 57n + 21
11. 9x 2 − 42x + 49
12. 3x 4 + 2x 3 − 7x 2 + 6x − 9
15y 2
2bx
14. a) (a − 10) (a + 4)
b) ÁÊË 3y − 1 ˜ˆ¯ ÁÊË 2y + 5 ˜ˆ¯
13.
c) 3mn (2m − 5) (2m + 5)
d) ÊÁË 7x − 10y ˆ˜¯ ÊÁË 7x + 10y ˆ˜¯
e) ÊÁË 6x − 5y ˆ˜¯ ÊÁË p + 7 ˆ˜¯
Ê
ˆ
15. a) 5x ⋅ y 2 ⋅ ÁÁ −x 3 + 4y + 3y 2 ˜˜
Ë
¯
ÊÁ 2
ˆ˜
b) (3x + 1) ⋅ Á x − 5 ˜
Ë
¯
c) 5(2x − 5y) ⋅ (2x + 5y)
2
d) ÊÁË 2x − 3y ˆ˜¯
−5
16. a) n = 0, 3, or
2
b) x = −10, 2
6
7
c) x = − ,x =
5
4
3
d) x = 5 or
4
e) x =
3±
39
3
1
ID: A
2
3
18. x ≤ −5 or x ≥ −1
17. x = 4,x = −
19. −5 < x < 11
20.
21.
22.
23.
24.
25.
6
y−5
a+x
−3a
x=12
P=102
a) x = 8
b) x = 4 5
h = 18in
a)
26. a) −
3
2
b) 2
b)
c)
2
3
d) 0
e)
c)
5
6
−2
−3
, m2 =
3
2
Since these slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.
28. y + 11 = 2(x + 1)
27. m1 =
2x − y = 9
29. (-4, -21)
2
ID: A
30. ÊÁË −3, − 7 ˆ˜¯
31.
32.
33.
No solution.
(2, 1)
ÊÁ −4, − 7 ˆ˜
Ë
¯
34. 220 calories
35.
3
Related documents