Download Slide 5.5

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
5.5
Law of Sines
Copyright © 2011 Pearson, Inc.
What you’ll learn about




Deriving the Law of Sines
Solving Triangles (AAS, ASA)
The Ambiguous Case (SSA)
Applications
… and why
The Law of Sines is a powerful extension of the triangle
congruence theorems of Euclidean geometry.
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 2
Law of Sines
In VABC with angles A, B, and C opposite sides
a, b, and c, respectively, the following equation is true:
sin A sin B sinC


.
a
b
c
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 3
Example Solving a Triangle Given
Two Angles and a Side
Solve VABC given that A  38o, B  46o, and a  9.
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 4
Example Solving a Triangle Given
Two Angles and a Side
Solve VABC given that A  38o, B  46o, and a  9.
Find C  180o  38o  46o  96o.
Apply the Law of Sines:
sin A sin B
sin A sinC


a
b
a
c
sin 38o sin 46o
sin 38o sin 96o


9
b
9
c
9sin 46o
9sin 96o
b
c
o
sin 38
sin 38o
b  10.516
c  14.538
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 5
Example Solving a Triangle Given
Two Angles and a Side
Solve VABC given that A  38o, B  46o, and a  9.
The six parts of the triangle are:
A  38o
a9
B  46o
b  10.516
C  96
c  14.538
Copyright © 2011 Pearson, Inc.
o
Slide 5.5 - 6
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve VABC given that a  12, c  8, and C  25º.
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 7
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve VABC given that a  12, c  8, and C  25º.
Use the Law of Sines to find B.
sin 30 sin B

7
6
 6sin 30 
B  sin 

 7 
B  25.4
or
If B  25.4 ,
then C  180  30  25.4  124.6
7 sin124.6
and c 
 11.5
sin 30
1
B  180  25.4  154.6
If B  154.6 ,
then C  180  30  154.6  4.6
Since this is not possible,
there is only one triangle.
The six parts of the triangle are:
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 8
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve VABC given that a  12, c  8, and C  25º.
Use the Law of Sines to find B. If B is acute:
sin B sin 25º

12
8
3sin 25º
sin B 
2
1  3sin 25º 
B  sin 


2 
B  39º
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 9
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve VABC given that a  12, c  8, and C  25º.
Continuing with B acute:
B  39º
A  116º
sin A sinC

a
c
sin116º sin 25º

a
8
a  17.0
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 10
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve VABC given that a  12, c  8, and C  25º.
Use the Law of Sines to find B. If B is obtuse:
sin B sin 25º

12
8
3sin 25º
sin B 
2
1  3sin 25º 
B  180º  sin 


2 
B  141º
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 11
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve VABC given that a  12, c  8, and C  25º.
Continuing with B obtuse:
B  141º
A  14º
sin A sin C

a
c
sin14º sin 25º

a
8
a  4.6
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 12
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve VABC given that a  12, c  8, and C  25º.
Interpret
One triangle has a  17.0, A  116º, and B  39º.
The other has a  4.6, A  14º, and B  141º.
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 13
Example Finding the Height of a Pole
A road slopes 15o above the horizontal, and a vertical
telephone pole stands beside the road. The angle of
elevation of the Sun is 65o, and the pole casts a 15 foot
shadow downhill along the road. Find the height
of the pole.
A 65º
x
B
15º
C
Copyright © 2011 Pearson, Inc.
Slide 5.5 - 14
Example Finding the Height of a Pole
A 65º
x
B
15º
C
Copyright © 2011 Pearson, Inc.
Let x  the height of the pole.
BAC  180  90  65  25
o
o
o
o
ACB  65o  15o  50o
sin 25 sin 50

15
x
15sin 50
x
 27.2
sin 25
The height of the pole is about 27.2 feet.
Slide 5.5 - 15
Related documents