Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
2017 MATH 1112: DR.YOU
CHAPTER 2. ANALYTIC TRIGONOMETRY
LECTURE 1-1 INVERSE TRIGONOMETRIC FUNCTIONS
INVERSE
The function
Inverse function
Domain of inverse
Range of inverse
π¦ = sin π₯
π¦ = sinβ1 π₯ or π¦ = arcsin π₯
[β1,1]
π π
[β , ]
2 2
π¦ = cos π₯
π¦ = cos β1 π₯ or π¦ = arccos π₯
[β1,1]
[0, π]
π¦ = tan π₯
π¦ = tanβ1 π₯ or π¦ = arctan π₯
(ββ, β)
π¦ = csc π₯
π¦ = csc β1 π₯ or π¦ = arccsc π₯
(ββ, β1] βͺ [1, β)
π¦ = sec π₯
π¦ = sec β1 π₯ or π¦ = arcsec π₯
(ββ, β1] βͺ [1, β)
π¦ = cot π₯
π¦ = cot β1 π₯ or π¦ = arccot π₯
(ββ, β)
NOTE:
1
csc β1 π₯ = sinβ1 ( ),
π₯
1
sec β1 π₯ = cosβ1 ( ),
π₯
(0, π)
1
cot β1 π₯ = tanβ1 ( )
π₯
Example 1
Your Turn 1
Find the exact value of
Find the exact value of
1
(A) sinβ1 (2)
(B) sinβ1 (β
β3
)
2
1
(A) Since 2 > 0, the value of angle π in the unit circle
1
is in I quadrant such that sin π = 2
1
2
sinβ1 ( ) =
(B) Since β
β3
2
π
6
< 0, the value of angle π in unit circle
is in IV quadrant and negative such that sin π =
β
β3
2
sinβ1 (β
π
β3
)=β
2
3
π π
(β , )
2 2
π π
π¦β 0
[β , ] ,
2 2
π
[0, π],
π¦β
2
(A) sinβ1 (β
β2
)
2
(B) sinβ1 (1)
48
2017 MATH 1112: DR.YOU
Example 2
Your Turn 2
Find the exact value of
Find the exact value of
β2
(B) cosβ1 (β
(A) cosβ1 ( 2 )
(A) Since
β2
2
1
(A) cosβ1 (β 2)
cosβ1 (
β3
2
β2
.
2
π
β2
)=
2
4
< 0, the value of angle π in unit circle
is in II quadrant such that cos π = β
cosβ1 (β
β3
.
2
5π
β3
)=
2
6
Example 3
Your Turn 3
Find the exact value of
Find the exact value of
(A) tanβ1(1)
(B) tanβ1(ββ3)
(A) Since 1 > 0, the value of angle π in the unit circle
is in I quadrant such that tan π = 1.
π
tanβ1 (1) =
4
(B) Since ββ3 < 0, the value of angle π in unit circle
is in IV quadrant and negative such that sin π =
β
β2
(B) cosβ1 ( 2 )
> 0, the value of angle π in unit circle is
in II quadrant such that cos π =
(B) Since β
β3
)
2
β3
2
tanβ1 (ββ3) = β
π
3
(A) tanβ1(β1)
1
(B) tanβ1 ( 3)
β
49
2017 MATH 1112: DR.YOU
Example 4
Your Turn 4
Use a calculator to find exact value of the following in
Use a calculator to find exact value of the following in
degree. Round four decimal place.
radian. Round four decimal place.
4
12
(A) sinβ1 (9)
(B) cosβ1 (β 13)
(C) sinβ1 (1.2)
(D) tanβ1(4)
(A) sinβ1 (9)
(B) cosβ1 (β0.6)
(C) cosβ1 (2)
(D) tanβ1(6)
5
4
(A) sinβ1 (9) β 26.3978°
12
(B) cosβ1 (β 13) β 157.3801°
(C) sinβ1 (1.2) is undefined: error since there are no
angles π such that sin π = 1.2.
(D) tanβ1(4) = 75.9638°
Example 5
Your Turn 5
Use a calculator to find exact value of the following in
Use a calculator to find exact value of the following in
degree. Round four decimal place.
radian. Round four decimal place.
3
(A) cscβ1 (2)
5
(B) secβ1 (β 3)
3
(A) We find angle π such that csc π = 2
2
2
β π = sinβ1 ( )
3
3
3
2
cscβ1 ( ) = sinβ1 ( ) = 41.8103°
2
3
sin π =
5
(B) We find angle π such that sec π = β 3
3
3
β π = cosβ1 (β )
5
5
5
3
secβ1 (β ) = cosβ1 (β ) = 126.8699°
3
5
cos π = β
(A) cscβ1 (1.2)
(B) cotβ1 (3)
50
2017 MATH 1112: DR.YOU
THE RELATION BETWEEN INVERSE FUNCTIONS
Functions
relation
sinβ1(sin π) = π ,
β
Sine function
Cosine function
π
π
β€πβ€
2
2
sin(sinβ1 π΄) = π΄,
β1 β€ π΄ β€ 1
cosβ1(cos π) = π ,
0β€πβ€π
cos(cosβ1 π΄) = π΄,
β1 β€ π΄ β€ 1
tanβ1 (tan π) = π,
β
tan(tanβ1 π΄) = π΄,
ββ < π΄ < β
Tangent function
π
π
<π<
2
2
Example 6
Your Turn 6
Find the exact value of
Find the exact value of
π
2π
(A) sinβ1 (sin ( 3 ))
(C) sinβ1 (sin (β
(B) sinβ1 (sin ( 3 ))
2π
))
3
π
π
(A) We find an angle π such that β 2 β€ π β€ 2 .
π
π
β3
sinβ1 (sin ( )) = sinβ1 ( ) =
3
2
3
π
π
(B) We find an angle π such that β 2 β€ π β€ 2 .
2π
β3
β3
sinβ1 (sin ( )) = sinβ1 ( ) =
3
2
2
2π
π
sinβ1 (sin ( )) =
3
3
π
π
(C) We find an angle π such that β 2 β€ π β€ 2 .
sinβ1 (sin (β
2π
π
β3
)) = sinβ1 (β ) = β
3
2
3
(Warning: not
5π
3
π
π
since β 2 β€ π β€ 2 )
4π
(A) sinβ1 (sin ( 3 ))
π
(B) sinβ1 (sin (β 6 ))
51
2017 MATH 1112: DR.YOU
Example 7
Your Turn 7
Find the exact value of
Find the exact value of
5π
(A) tanβ1 (tan ( 4 ))
π
(B) tanβ1 (tan (β 3 ))
π
2π
(A) tanβ1 (tan ( 3 ))
(B) tanβ1 (tan (β
11π
))
6
π
(A) We find an angle π such that β 2 β€ π β€ 2 .
5π
π
tanβ1 (tan ( )) = tanβ1 (1) = β
4
4
π
π
(B) We find an angle π such that β 2 β€ π β€ 2 .
π
π
tanβ1 (tan (β )) = tanβ1(ββ3) = β
3
3
Example 8
Your Turn 8
Find the exact value of
Find the exact value of
π
(A) cosβ1 (cos (β 4 ))
3π
(B) cosβ1 (cos ( 4 ))
(A) We find an angle π such that 0 β€ π β€ π.
π
4
cosβ1 (cos (β )) = cosβ1 (β
3π
β2
)=
2
4
(B) We find an angle π such that 0 β€ π β€ π.
cosβ1 (cos (
3π
3π
β2
)) = cosβ1 (β ) =
4
2
4
5π
(A) cosβ1 (cos ( 4 ))
5π
(B) cosβ1 (cos ( 6 ))
52
2017 MATH 1112: DR.YOU
Example 9
Your Turn 9
Find the exact value of
Find the exact value of
cosβ1 (sin (
5π
))
4
(A) sinβ1 (cos (β
7π
))
6
We find an angle π such that 0 β€ π β€ π.
5π
3π
β2
cosβ1 (sin ( )) = cos β1 (β ) =
4
2
4
π
(B) cosβ1 (tan (β 4 ))
7π
(C) cosβ1 (sin ( 6 ))
53
2017 MATH 1112: DR.YOU
Example 10
Your Turn 10
Find the exact value of
Find the exact value of
5
5
(A) cos (tanβ1 (12))
(B) tan (cos β1 (β 13))
5
π
(A) Let π = tanβ1 (12). Then β 2 β€ π β€
5
(A) cos (tanβ1 (12))
3
(B) tan (cos β1 (β 5))
π
2
We find a point in the terminal side of π
π₯ = 12, π¦ = 5 in I quadrant
π₯
π¦
π
12
5
13
5
12
cos (tanβ1 ( )) = cos π =
12
13
(C) cot (cos β1 (β
(B) Let π = cosβ1 (β
5
).
13
Then 0 β€ π β€ π
We find a point in the terminal side of π
π₯ = β5, π = 13 in II quadrant
π₯
π¦
π
β5
12
13
tan (cosβ1 (β
5
12
)) = tan π = β
13
5
7
))
25
3
4
(D) sin (tanβ1 (β ))
54
2017 MATH 1112: DR.YOU
LECTURE 2-2 TRIGONOMETRY IDENTITIES AND SUM/DIFFERENCE FORMULA
FUNDAMENTAL IDENTITIES
tan π =
sin π
cos π
cot π =
sin2 π₯ + cos2 π₯ = 1
1
cos π
=
tan π sin π
csc π =
1
sin π
tan2 π₯ + 1 = sec 2 π₯
sec π =
cot 2 π₯ + 1 = csc 2 π₯
EVEN/ODD FUNCTIONS
Odd: Symmetry with respect to origin
Even: Symmetry with respect to π -axis
sin(βπ) = β sin(π)
csc(βπ) = β csc(π)
tan(βπ) = β tan(π)
cot(βπ) = β cot(π)
cos(βπ) = cos(π)
sec(βπ) = sec(βπ)
Example 1
Your Turn 1
Find the exact value of the expression.
Find the exact value of the expression.
(A) sin2(50°) + cos2(50°)
(A) cos2 (179°) + sin2(179°)
(B) tan2 (49°) β sec 2(49°)
(A) sin2(50°) + cos2(50°) = 1
(B) tan2 (49°) β sec 2(49°)
= sec
2 (49°)
β 1 β sec
2 (49°)
1
cos π
(B) sec 2(130°) β tan2 (130°)
= β1
(C) csc 2(68°) β cot 2(68°)
55
2017 MATH 1112: DR.YOU
Example 2
Your Turn 2
Find the exact value of the expression.
Find the exact value of the expression.
(A) sin(β30°)
(B) cos(β30°)
(A) sin(β45°)
(B) cos(β120°)
(C) tan(β30°)
(D) sec(β60°)
1
(A) sin(β30°) = β sin(30°) = β 2
(B) cos(β30°) = cos(30°) =
β3
2
Sum and
sin(π + π) = sin π cos π + cos π sin π
difference
sin(π β π) = sin π cos π β cos π sin π
Formulas
cos(π + π) = cos π cos π β sin π sin π
cos(π β π) = cos π cos π + sin π sin π
tan(π + π) =
tan π + tan π
1 β tan π tan π
tan(π β π) =
tan π β tan π
1 + tan π tan π
Example 3
Your Turn 3
Find the exact value of each expression.
Find the exact value of each expression.
(A) sin(20°) cos(10°) + cos(20°) sin(10°)
(A) sin(40°) cos(50°) + cos(40°) sin(50°)
(B) sin(20°) cos(80°) β cos(20°) sin(80°)
sin(20°) cos(10°) + cos(20°) sin(10°)
= sin(20° + 10°) = sin(30°)
1
(B) sin(79°) cos(31°) β cos(79°) sin(31°)
=2
sin(20°) cos(80°) β cos(20°) sin(80°)
= sin(20° β 80°) = sin(β60°)
=β
β3
2
56
2017 MATH 1112: DR.YOU
Example 4
Your Turn 4
Find the exact value of each expression.
Find the exact value of each expression.
(A) cos(70°) cos(20°) + sin(20°) sin(20°)
(B) cos(50°) cos(10°) β sin(50°) sin(10°)
3π
π
3π
π
π
π
π
π
(A) cos ( 8 ) cos ( 8 ) + sin ( 8 ) sin ( 8 )
cos(70°) cos(25°) + sin(70°) sin(25°)
= cos(70° β 25°) = cos(45°)
=
β2
2
(B) cos (12) cos ( 4 ) β sin (12) sin ( 4 )
cos(50°) cos(10°) β sin(50°) sin(10°)
= cos(50° + 10°) = cos(60°)
=
1
2
Example 5
Your Turn 5
Find the exact value of each expression.
Find the exact value of each expression.
tan(20°) + tan(25°)
1 β tan(20°) tan(25°)
(A)
tan(40°)βtan(10°)
1+tan(40°) tan(10°)
(B)
5π
π
)+tan( )
12
4
5π
π
1βtan( ) tan( )
12
4
tan(20°) + tan(25°)
1 β tan(20°) tan(25°)
= tan(20° + 25°) = tan(45°)
=1
tan(
57
2017 MATH 1112: DR.YOU
Example 6
Your Turn 6
Find the exact value of
Find the exact value of
sin(30° + 45°)
sin(60° β 45°)
sin(30° + 45°)
= sin(30°) cos(45°) + cos(30°) sin(45°)
=
1 β2 β3 β2
β
+
β
2 2
2 2
=
β2 + β6
4
Example 7
Your Turn 7
Find the exact value of
Find the exact value of
cos(135° + 60°)
cos(45° β 30°)
cos(135° + 60°)
= cos(135°) cos(60°) β sin(135°) sin(60°)
= (β
=
β2 1 β2 β3
β
)β β
2
2
2 2
ββ2 + β6
4
Example 8
Your Turn 8
Find the exact value of
Find the exact value of
tan(30° β 45°)
tan(30° β 45°) =
=
=
tan(30°) β tan(45°)
1 + tan(30°) tan(45°)
β3
β1
3
β3
1+ β1
3
β3β3
β3
= 3+
β12β6β3
6
=
(β3β3)(3ββ3)
(3+β3)(3ββ3)
= β2 β β3
tan(45° β 60°)
58
2017 MATH 1112: DR.YOU
Example 9
Your Turn 9
Find the exact value of
Find the exact value of
sin(105°)
sin(75°)
sin(105°)
= sin(60° + 45°)
= sin(60°) cos(45°) + cos(60°) sin(45°)
=
β3 β2 1 β2
β
+ β
2 2
2 2
=
β6 + β2
4
Example 10
Your Turn 10
Find the exact value of
Find the exact value of
cos(285°)
cos(285°)
= cos(240° + 45°)
= cos(240°) cos(45°) β sin(240°) sin(45°)
1 β2
β3 β2
= (β ) β
β (β ) β
2
2
2
2
=
ββ2 + β6
4
cos (
7π
)
12
59
2017 MATH 1112: DR.YOU
Example 11
Your Turn 11
Find the exact value of
Find the exact value of
tan(165°)
tan(15°)
tan(15°)
= tan(45° β 30°)
=
tan(45°) β tan(30°)
1 + tan(45°) tan(30°)
=
β3
3
β3
1+ β1
3
=
3ββ3
3+β3
=
(3ββ3)(3ββ3)
=
12+6β3
6
1β
(3+β3)(3ββ3)
= 2 + β3
Your Turn
Your Turn
Find the exact value of
Find the exact value of
17π
sin (
)
12
cos (β
5π
)
12
60
2017 MATH 1112: DR.YOU
Example 12
Your Turn 12
Simplify the expression by using sum and difference
Simplify the expression by using sum and difference
formula.
formula.
sin(7π₯) cos(3π₯) + cos(7π₯) sin(3π₯)
(A) cos(2π₯) cos(5π₯) + sin(2π₯) sin(5π₯)
sin(7π₯) cos(3π₯) + cos(7π₯) sin(3π₯)
(B) sin(5π₯) cos(2π₯) β cos(5π₯) sin(2π₯)
= sin(7π₯ + 3π₯)
= sin(10π₯)
Example 13
Your Turn 13
Find the exact value of sin(πΌ + π½) when
Find the exact value of sin(πΌ β π½) when
3
sin πΌ = 5 , 0 < πΌ <
π
2
12
π
and cos π½ = 13 , β 2 < π½ < 0
We find points on terminal side which is corresponding to
angles πΌ and π½.
π₯
π¦
π
πΌ:I
+4
+3
5
π½ : IV
+12
β5
13
quadrant
sin(πΌ + π½)
= sin πΌ cos π½ + cos πΌ sin π½
3 12
4
5
= ( ) ( ) + ( ) (β )
5 13
5
13
=
16
65
4
cos πΌ = 5 , 0 < πΌ <
π
2
3
π
and sin π½ = β 5 , β 2 < π½ < 0.
61
2017 MATH 1112: DR.YOU
Your Turn
Your Turn
Find the exact value of cos(πΌ + π½) when
Find the exact value of cos(πΌ β π½) when
4
tan πΌ = β 3 ,
π
2
1
π
< πΌ < π and cos π½ = 2 , 0 < π½ < 2 .
Example 14
5
π
Your Turn 14
π
2
Verify the identity sin ( + π₯) = cos π₯
3
sin πΌ = β 13 , β 2 < πΌ < 0 and cos π½ = 5 , 0 < π½ <
Verify the identity: cos(π β π₯) = β cos π₯
π
2
62
2017 MATH 1112: DR.YOU
Example 15
Your Turn 15
Find the exact value of
Find the exact value of
1
3
sin [cosβ1 ( ) + sinβ1 (β )]
2
5
1
4
5
cos [tanβ1 ( ) + cos β1 ( )]
3
13
3
Let πΌ = cos β1 (2) and π½ = sinβ1 (β 5).
We find points on terminal side which is corresponding to
angles πΌ and π½.
π₯
π¦
π
πΌ:I
+1
+β3
2
π½ : IV
+4
β3
5
quadrant
1
3
sin [cosβ1 ( ) + sinβ1 (β )]
2
5
= sin(πΌ + π½)
= sin πΌ cos π½ + cos πΌ sin π½
=(
=
1
3
β3 4
) ( ) + ( ) (β )
2
5
2
5
4β3 β 3
10
63
2017 MATH 1112: DR.YOU
Your Turn
Your Turn
Find the exact value of
Find the exact value of
4
5
cos [tanβ1 ( ) + cosβ1 ( )]
3
13
3
4
sin [sinβ1 ( ) + cosβ1 (β )]
5
5
64
2017 MATH 1112: DR.YOU
LECTURE 2-3 HALF/DOUBLE FORMULA
sin(2π) = 2 sin π cos π
Double angle
Formulas
tan(2π) =
cos(2π) = cos 2 π β sin2 π
Half angle
cos(2π) = 2 cos2 π β 1
π
1 β cos π
sin ( ) = ±β
2
2
Formulas
2 tan π
1 β tan2 π
cos(2π) = 1 β 2 sin2 π
π
1 β cos π
tan ( ) =
2
sin π
π
1 + cos π
cos ( ) = ±β
2
2
π
(the sign is determined by the quadrant of 2 )
Example 1
Your Turn 1
Find the exact value of cos(2π) if
Find the exact value of cos(2π) if
sin(π) =
5
13
3
(A) cos(π) = β 5
cos(2π)
= 1 β 2 sin2 π
3
5 2
= 1 β 2( )
13
=
(B) sin(π) = 7
119
169
Example 2
Your Turn 2
Find the exact value of sin(2π) if
Find the exact value of sin(2π₯) if
3
sin(π) = ,
5
π
<π<π
2
cos(π) =
We find a point on terminal side which is corresponding
to angle π.
quadrant
π : II
π₯
π¦
π
β4
+3
5
3
4
24
sin(2π) = 2 sin(π) cos(π) = 2 ( ) (β ) = β
5
5
25
12
,
13
0<π<
π
2
65
2017 MATH 1112: DR.YOU
Example 3
Your Turn 3
Find the exact value of 2 sin(15°) cos(15°)
Find the exact value of 2 sin(22.5°) cos(22.5°)
2 sin(15°) cos(15°)
= sin(2 β 15°)
= sin(30°)
1
=2
Example 4
Your Turn 4
Find the exact value of cos2 (75°) β sin2(75°)
Find the exact value of
(A) cos2 (105°) β sin2(105°)
cos2 (75°) β sin2(75°)
= cos(2 β 75°)
(B) 2 cos2 (15°) β 1
= cos(150°)
=
β3
2
(C) 1 β 2 sin2(22.5°)
Example 5
Your Turn 5
Find the exact value of sin(β22.5°) by half-angle
Find the exact value of cos(15°) by half-angle formula.
formula.
Since β22.5° is in IV quadrant, the value of sine is
negative;
β45°
sin(β22.5°) = sin (
)
2
=
1 β cos(β45°)
1 β β2β2
β
= ββ
2
2
π§ππ πππ’π―π
β
β
β2 β β2
2 β β2
= ββ
=β
4
2
66
2017 MATH 1112: DR.YOU
Your Turn
Your Turn
Find the exact value of sin(75°) by half-angle formula.
Find the exact value of cos(112.5°) by half-angle
formula.
Example 6
Your Turn 6
π
8
Find the exact value of sin ( ) by half-angle formula.
π
12
Find the exact value of cos ( ) by half-angle formula.
67
2017 MATH 1112: DR.YOU
Example 7
Your Turn 7
Find the exact value of tan(15°) by half-angle formula.
Find the exact value of tan(22.5°) by half-angle formula.
30°
tan(15°) = tan ( )
2
1 β cos(30°)
=
sin(30°)
β3
1β 2
=
1
2
= 2 β β3
Sum to product
Formulas
Product to Sum
Formulas
π+π
πβπ
) cos (
)
2
2
πβπ
π+π
sin π β sin π = 2 sin (
) cos (
)
2
2
1
sin π sin π = {cos(π β π) β cos(π + π)}
2
1
sin π cos π = {sin(π + π) + sin(π β π)}
2
sin π + sin π = 2 sin (
π+π
πβπ
cos π + cos π = 2 cos (
) cos (
)
2
2
π+π
πβπ
cos π β cos π = β2 sin (
) sin (
)
2
2
1
cos π cos π = {cos(π β π) + cos(π + π)}
2
Example 8
Your Turn 8
Find the exact value of sin(75°) + sin(15°)
Find the exact value of cos(225°) β cos(195°)
sin(75°) + sin(15°)
= 2 sin (
75° + 15°
75° β 15°
) cos (
)
2
2
= 2 sin(45°) cos(30°)
= 2(
=
β2
2
β2 1
)( )
2
2
68
2017 MATH 1112: DR.YOU
Example 9
Your Turn 9
Find the exact value of sin(195°) β cos(75°)
Find the exact value of cos(285°) β cos(195°)
sin(195°) β cos(75°)
1
= {sin(195° + 75°) + sin(195° β 75°)}
2
1
= {sin(270°) + sin(120°)}
2
1
= 2 {β1 +
=
β3
}
2
β2+β3
4
Example 10
Your Turn 10
Simplify the expression by using sum to product formula
Simplify the expression by using sum to product formula
cos(5π₯) β cos(π₯)
sin(2π₯) β sin(4π₯)
sin(2π₯) β sin(4π₯)
= 2 sin (
2π₯ β 4π₯
2π₯ + 4π₯
) cos (
)
2
2
= 2 sin(βπ₯) cos(3π₯)
= 2 sin(π₯) cos(3π₯)
Your Turn
Your Turn
Simplify the expression by using sum to product formula
Simplify the expression by using sum to product formula
sin(π₯) + sin(3π₯)
cos(π₯) + cos(5π₯)
69
2017 MATH 1112: DR.YOU
Example 11
Your Turn 11
Simplify the expression by using product to sum formula
Simplify the expression by using product to sum formula
cos(10π₯) β sin(6π₯)
sin(6π₯) β cos(2π₯)
cos(10π₯) β sin(6π₯)
= sin(6π₯) β cos(10π₯)
1
= {sin(6π₯ + 10π₯) + sin(6π₯ β 10π₯)}
2
1
= {sin(16π₯) + sin(β4π₯)}
2
1
= {sin(16π₯) β sin(4π₯)}
2
Your Turn
Your Turn
Simplify the expression by using product to sum formula
Simplify the expression by using product to sum formula
cos(3π₯) β cos(5π₯)
sin(4π₯) β sin(2π₯)
70
2017 MATH 1112: DR.YOU
LECTURE 2-4 IDENTITIES
Fundamental
Identities
Half angle
Formulas
tan π =
sin π
cos π
cot π =
cos π
sin π
cot π =
1
tan π
csc π =
sin2 π + cos 2 π = 1
tan2 π + 1 = sec 2 π
π
1 β cos π
sin ( ) = ±β
2
2
π
1 + cos π
cos ( ) = ±β
2
2
1
sin π
sec π =
1
cos π
cot 2 π + 1 = csc 2 π
π
1 β cos π
tan ( ) =
2
sin π
π
Formulas
( the sign is determined by the quadrant of 2 )
2 tan π
sin(2π) = 2 sin π cos π
tan(2π) =
1 β tan2 π
Sum and
sin(π + π) = sin π cos π + cos π sin π
difference
sin(π β π) = sin π cos π β cos π sin π
Formulas
cos(π + π) = cos π cos π β sin π sin π
Double angle
cos(2π) = cos 2 π β sin2 π
cos(2π) = 2 cos2 π β 1
cos(π β π) = cos π cos π + sin π sin π
Sum to product
Formulas
Product to Sum
Formulas
π+π
πβπ
) cos (
)
2
2
πβπ
π+π
sin π β sin π = 2 sin (
) cos (
)
2
2
1
sin π sin π = {cos(π β π) β cos(π + π)}
2
1
sin π cos π = {sin(π + π) + sin(π β π)}
2
sin π + sin π = 2 sin (
cos(2π) = 1 β 2 sin2 π
tan(π + π) =
tan π + tan π
1 β tan π tan π
tan(π β π) =
tan π β tan π
1 + tan π tan π
π+π
πβπ
cos π + cos π = 2 cos (
) cos (
)
2
2
π+π
πβπ
cos π β cos π = β2 sin (
) sin (
)
2
2
1
cos π cos π = {cos(π β π) + cos(π + π)}
2
Example 1
Your Turn 1
Establish the identity
Establish the identity
cos π (tan π + cot π) = csc π
csc π β cos π = cot π
71
2017 MATH 1112: DR.YOU
Example 2
Your Turn 2
Establish the identity
Establish the identity
cos2 π (1 + tan2 π) = 1
(sec π β 1)(sec π + 1) = tan2 π
Example 3
Your Turn 3
Establish the identity
Establish the identity
9 sec2 π β 5 tan2 π = 5 + 4 sec2 π
3 sin2 π + 4 cos2 π = 3 + cos2 π
72
2017 MATH 1112: DR.YOU
Example 4
Your Turn 4
Establish the identity
Establish the identity
1 β sin π
= (sec π + tan π)2
1 + sin π
1β
Example 5
Your Turn 5
Establish the identity
Establish the identity
1 β sin π
cos π
=
cos π
1 β sin π
sin2 π
1 + cos π
= cos π
cos π
= sec π β tan π
1 + sin π
73
2017 MATH 1112: DR.YOU
REVIEW PROBLEMS FOR EXAM 2
1. Find the exact value of the following expression in radian.
(A) cosβ1 (β
β3
)
2
(B) sinβ1 (β
(C) tanβ1 (β3)
β2
)
2
2. Find the exact value of the expression in radian without using a calculator.
14π
))
3
9π
(A) sinβ1 (sin (
9π
(B) cosβ1 (cos ( 4 ))
(C) sinβ1 (sin ( 8 ))
3. Find the exact value of the following expression.
3
12
(A) cot (sinβ1 (β 5))
1
(C) sec (tanβ1 (2))
(B) tan (cos β1 (β 13))
3
5
4. Find the exact value of the following expression: sin [sinβ1 (5) β cos β1 (β 13)]
3
5. Given cos π = β 5 ,
π
2
5
β€ π β€ π and sin π = β 13 ,
24
3π
2
β€ π β€ 2π, find sin(π + π).
5
6. Given cos π = β 25 with π in quadrant II and sin π = β 13 with π in qudrant IV, find cos(π + π)
5π
2π
5π
2π
7. Find the exact value of sin ( 18 ) cos ( 18 ) β cos ( 18 ) sin ( 18 ).
8. Write sin(3π₯) β cos(4π₯) + cos(3π₯) β sin(4π₯) in terms of a single trigonometric function.
9. Write sin(2π₯) cos(3π₯) β cos(2π₯) sin(3π₯) in terms of a single trigonometric function.
10. Using a Sum or Difference Identity, find the exact value cos(105°)
4
5
π
2
11. Find the exact value of cos(2π) given sin π = and 0 < π < .
π
12. Using a half-angle Identity, find the exact value sin (β 12)
13. Use a half-angle identity to evaluate tan(22.5°).
14. Find the exact value of
5π
π
3π
(A) cos ( 12 ) cos (12)
15. Simplify:
(sin π+cos π)2 β1
sin π cos π
16. Establish the identity:
π
(B) sin ( 8 ) cos ( 8 )
1βsin π
cos π
cos π
+ 1βsin π = 2 sec π.
74
2017 MATH 1112: DR.YOU
SOLUTIONS:
β3
)
2
with
β2
)
2
with β 2 < π₯ < 0. Since sin π = β
1. (A) Let π = cosβ1 (β
π
2
< π₯ < π. Since cos π = β
β3
2
and π is in the second quadrant, π =
5π
6
by using
the unit circle.
(B) Let π = sinβ1 (β
π
β2
2
and π is negative in the fourth quadrant, π =
π
β 4 by using the unit circle.
π
(C) Let π = tanβ1(β3) with 0 < π₯ < 2 . Since tan π = β3 and π is in the first quadrant, π =
π
3
by using the unit
circle.
2. (A) Since
angle
π
.
3
14π
3
π
2
π
2
is not in the interval β < π₯ < , we may not simply cancel the sine and sine inverse function. The
14π 2π
~
3
3
lies in quadrant II. Reflect this angle over the π¦-axis into quadrant I and its corresponding angle is
Then
14π
2π
π
sinβ1 (sin (
)) = sinβ1 (sin ( )) =
3
3
3
(B) Since
9π
4
The angle
9π π
~
4
4
(C) Since
9π
8
angle
9π
8
π
π
is not in the interval β 2 < π₯ < 2 , we may not simply cancel the cosine and cosine inverse function.
9π
4
π
4
lies in quadrant I. Then cosβ1 (cos ( )) = cosβ1 (cos ( )) =
π
2
π
4
π
2
is not in the interval β < π₯ < , we may not simply cancel the sine and sine inverse function. The
lies in quadrant III. Reflect this angle over the π¦-axis into quadrant IV and its corresponding angle is
π
8
negative β . Then
9π
π
sinβ1 (sin ( )) = β
8
8
3
5
π
2
3. (A) Let π = sinβ1 (β ) with β < π₯ <
π
2
: π lies in quadrant IV β π¦ = β3, π₯ = 4 and π = 5
3
π₯
4
4
cot (sinβ1 (β )) = =
=β
5
π¦ β3
3
12
(B) Let π = cosβ1 (β 13) with 0 < π₯ < π : π lies in quadrant II β π¦ = 5, π₯ = β12 and π = 13
tan (cosβ1 (β
1
2
π
2
(C) Let π = tanβ1 ( ) with β < π₯ <
π
2
12
π¦
5
)) = = β
13
π₯
12
: π lies in quadrant I β π¦ = 1, π₯ = 2 and π = β12 + 22 = β5
1
π β5
sec (tanβ1 ( )) = =
2
π₯
2
75
2017 MATH 1112: DR.YOU
3
5
4. Let π = sinβ1 (5) and π = cosβ1 (β 13)
quadrant
π₯
π¦
π
π: I quadrant
4
3
5
π: II quadrant
β5
12
13
3
5
3
5
4 12
33
sin [sinβ1 ( ) β cosβ1 (β )] = sin(π + π) = sin π cos π + cos π sin π = ( ) (β ) + ( ) ( ) =
5
13
5
13
5 13
65
5. First, find the corresponding terminal points for each angle;
quadrant
π₯
π¦
π
π: II quadrant
β3
4
5
π: IV quadrant
12
β5
13
4 12
3
5
33
sin(π + π) = sin π cos π + cos π sin π = ( ) ( ) + (β ) (β ) =
5 13
5
13
65
6. First, find the corresponding terminal points for each angle;
quadrant
π₯
π¦
π
π: II quadrant
β24
7
25
π: IV quadrant
β5
12
13
cos(π + π) = cos π cos π β sin π sin π = (β
5π
18
2π
18
5π
18
2π
18
5π
18
7. sin ( ) cos ( ) β cos ( ) sin ( ) = sin (
β
2π
)
18
24
5
7 12
36
) (β ) β ( ) ( ) =
25
13
25 13
325
π
6
= sin ( ) =
1
2
8. sin(3π₯) β cos(4π₯) + cos(3π₯) β sin(4π₯) = sin(3π₯ + 4π₯) = sin(7π₯)
9. sin(2π₯) cos(3π₯) β cos(2π₯) sin(3π₯) = sin(2π₯ β 3π₯) = sin(βπ₯) = β sin(π₯)
1
β2
β3
β2
10. cos(60° + 45°) = cos(60°) cos(45°) β sin(60°) sin(45°) = (2) ( 2 ) β ( 2 ) ( 2 ) =
4 2
32
7
11. cos(2π) = 1 β 2 sin2 π = 1 β 2 (5) = 1 β 25 = β 25
βπβ6
)
2
π
π
12. sin (β 12) = sin (
(it is negative since β 6 lies in quadrant IV)
π
6
1βcos(β )
= ββ
2
45°
)
2
13. tan(22.5°) = tan (
=
1β
= ββ
β3
2
2
1βcos(45°)
sin(45°)
= ββ
=
β2
2
β2
2
1β
2ββ3
4
=
=β
2ββ2
β2
β2ββ3
2
= β2 β 1
β2ββ6
4
76
2017 MATH 1112: DR.YOU
5π
1
π
4π
6π
1 1
1
14. (A) cos ( 12 ) cos (12) = 2 {cos (12) + cos (12)} = 2 {2 + 0} = 4
3π
1
π
4π
2π
1
(B) sin ( 8 ) cos (8 ) = 2 {sin ( 8 ) + sin ( 8 )} = 2 {1 +
15.
β2
2
}=
2+β2
4
(sin π+cos π)2 β1
sin π cos π
=
=
sin2 π+2 sin π cos π+cos2 πβ1
sin π cos π
2 sin π cos π
sin π cos π
by FOIL
since sin2 π + cos2 π = 1
=2
16.
1βsin π
cos π
+
cos π
1βsin π
=
(1βsin π)2
cos π(1βsin π)
=
1β2sin π+sin2 π
cos π(1βsin π)
=
1β2 sin π+sin2 π+cos2 π
cos π(1βsin π)
2β2 sin π
= cos π(1βsin π)
2(1βsin π)
+
(cos π)2
cos π(1βsin π)
cos2 π
+ cos π(1βsin π)
: find the least common denominator
: FOIL
: Make it one fraction and simplify
: since sin2 π + cos2 π = 1
= cos π(1βsin π) : Factor the numerator and simplify
2
= cos π
= 2 sec π
77