Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2017 MATH 1112: DR.YOU CHAPTER 2. ANALYTIC TRIGONOMETRY LECTURE 1-1 INVERSE TRIGONOMETRIC FUNCTIONS INVERSE The function Inverse function Domain of inverse Range of inverse 𝑦 = sin 𝑥 𝑦 = sin−1 𝑥 or 𝑦 = arcsin 𝑥 [−1,1] 𝜋 𝜋 [− , ] 2 2 𝑦 = cos 𝑥 𝑦 = cos −1 𝑥 or 𝑦 = arccos 𝑥 [−1,1] [0, 𝜋] 𝑦 = tan 𝑥 𝑦 = tan−1 𝑥 or 𝑦 = arctan 𝑥 (−∞, ∞) 𝑦 = csc 𝑥 𝑦 = csc −1 𝑥 or 𝑦 = arccsc 𝑥 (−∞, −1] ∪ [1, ∞) 𝑦 = sec 𝑥 𝑦 = sec −1 𝑥 or 𝑦 = arcsec 𝑥 (−∞, −1] ∪ [1, ∞) 𝑦 = cot 𝑥 𝑦 = cot −1 𝑥 or 𝑦 = arccot 𝑥 (−∞, ∞) NOTE: 1 csc −1 𝑥 = sin−1 ( ), 𝑥 1 sec −1 𝑥 = cos−1 ( ), 𝑥 (0, 𝜋) 1 cot −1 𝑥 = tan−1 ( ) 𝑥 Example 1 Your Turn 1 Find the exact value of Find the exact value of 1 (A) sin−1 (2) (B) sin−1 (− √3 ) 2 1 (A) Since 2 > 0, the value of angle 𝜃 in the unit circle 1 is in I quadrant such that sin 𝜃 = 2 1 2 sin−1 ( ) = (B) Since − √3 2 𝜋 6 < 0, the value of angle 𝜃 in unit circle is in IV quadrant and negative such that sin 𝜃 = − √3 2 sin−1 (− 𝜋 √3 )=− 2 3 𝜋 𝜋 (− , ) 2 2 𝜋 𝜋 𝑦≠0 [− , ] , 2 2 𝜋 [0, 𝜋], 𝑦≠ 2 (A) sin−1 (− √2 ) 2 (B) sin−1 (1) 48 2017 MATH 1112: DR.YOU Example 2 Your Turn 2 Find the exact value of Find the exact value of √2 (B) cos−1 (− (A) cos−1 ( 2 ) (A) Since √2 2 1 (A) cos−1 (− 2) cos−1 ( √3 2 √2 . 2 𝜋 √2 )= 2 4 < 0, the value of angle 𝜃 in unit circle is in II quadrant such that cos 𝜃 = − cos−1 (− √3 . 2 5𝜋 √3 )= 2 6 Example 3 Your Turn 3 Find the exact value of Find the exact value of (A) tan−1(1) (B) tan−1(−√3) (A) Since 1 > 0, the value of angle 𝜃 in the unit circle is in I quadrant such that tan 𝜃 = 1. 𝜋 tan−1 (1) = 4 (B) Since −√3 < 0, the value of angle 𝜃 in unit circle is in IV quadrant and negative such that sin 𝜃 = − √2 (B) cos−1 ( 2 ) > 0, the value of angle 𝜃 in unit circle is in II quadrant such that cos 𝜃 = (B) Since − √3 ) 2 √3 2 tan−1 (−√3) = − 𝜋 3 (A) tan−1(−1) 1 (B) tan−1 ( 3) √ 49 2017 MATH 1112: DR.YOU Example 4 Your Turn 4 Use a calculator to find exact value of the following in Use a calculator to find exact value of the following in degree. Round four decimal place. radian. Round four decimal place. 4 12 (A) sin−1 (9) (B) cos−1 (− 13) (C) sin−1 (1.2) (D) tan−1(4) (A) sin−1 (9) (B) cos−1 (−0.6) (C) cos−1 (2) (D) tan−1(6) 5 4 (A) sin−1 (9) ≈ 26.3978° 12 (B) cos−1 (− 13) ≈ 157.3801° (C) sin−1 (1.2) is undefined: error since there are no angles 𝜃 such that sin 𝜃 = 1.2. (D) tan−1(4) = 75.9638° Example 5 Your Turn 5 Use a calculator to find exact value of the following in Use a calculator to find exact value of the following in degree. Round four decimal place. radian. Round four decimal place. 3 (A) csc−1 (2) 5 (B) sec−1 (− 3) 3 (A) We find angle 𝜃 such that csc 𝜃 = 2 2 2 ⇒ 𝜃 = sin−1 ( ) 3 3 3 2 csc−1 ( ) = sin−1 ( ) = 41.8103° 2 3 sin 𝜃 = 5 (B) We find angle 𝜃 such that sec 𝜃 = − 3 3 3 ⇒ 𝜃 = cos−1 (− ) 5 5 5 3 sec−1 (− ) = cos−1 (− ) = 126.8699° 3 5 cos 𝜃 = − (A) csc−1 (1.2) (B) cot−1 (3) 50 2017 MATH 1112: DR.YOU THE RELATION BETWEEN INVERSE FUNCTIONS Functions relation sin−1(sin 𝜃) = 𝜃 , − Sine function Cosine function 𝜋 𝜋 ≤𝜃≤ 2 2 sin(sin−1 𝐴) = 𝐴, −1 ≤ 𝐴 ≤ 1 cos−1(cos 𝜃) = 𝜃 , 0≤𝜃≤𝜋 cos(cos−1 𝐴) = 𝐴, −1 ≤ 𝐴 ≤ 1 tan−1 (tan 𝜃) = 𝜃, − tan(tan−1 𝐴) = 𝐴, −∞ < 𝐴 < ∞ Tangent function 𝜋 𝜋 <𝜃< 2 2 Example 6 Your Turn 6 Find the exact value of Find the exact value of 𝜋 2𝜋 (A) sin−1 (sin ( 3 )) (C) sin−1 (sin (− (B) sin−1 (sin ( 3 )) 2𝜋 )) 3 𝜋 𝜋 (A) We find an angle 𝜃 such that − 2 ≤ 𝜃 ≤ 2 . 𝜋 𝜋 √3 sin−1 (sin ( )) = sin−1 ( ) = 3 2 3 𝜋 𝜋 (B) We find an angle 𝜃 such that − 2 ≤ 𝜃 ≤ 2 . 2𝜋 √3 √3 sin−1 (sin ( )) = sin−1 ( ) = 3 2 2 2𝜋 𝜋 sin−1 (sin ( )) = 3 3 𝜋 𝜋 (C) We find an angle 𝜃 such that − 2 ≤ 𝜃 ≤ 2 . sin−1 (sin (− 2𝜋 𝜋 √3 )) = sin−1 (− ) = − 3 2 3 (Warning: not 5𝜋 3 𝜋 𝜋 since − 2 ≤ 𝜃 ≤ 2 ) 4𝜋 (A) sin−1 (sin ( 3 )) 𝜋 (B) sin−1 (sin (− 6 )) 51 2017 MATH 1112: DR.YOU Example 7 Your Turn 7 Find the exact value of Find the exact value of 5𝜋 (A) tan−1 (tan ( 4 )) 𝜋 (B) tan−1 (tan (− 3 )) 𝜋 2𝜋 (A) tan−1 (tan ( 3 )) (B) tan−1 (tan (− 11𝜋 )) 6 𝜋 (A) We find an angle 𝜃 such that − 2 ≤ 𝜃 ≤ 2 . 5𝜋 𝜋 tan−1 (tan ( )) = tan−1 (1) = − 4 4 𝜋 𝜋 (B) We find an angle 𝜃 such that − 2 ≤ 𝜃 ≤ 2 . 𝜋 𝜋 tan−1 (tan (− )) = tan−1(−√3) = − 3 3 Example 8 Your Turn 8 Find the exact value of Find the exact value of 𝜋 (A) cos−1 (cos (− 4 )) 3𝜋 (B) cos−1 (cos ( 4 )) (A) We find an angle 𝜃 such that 0 ≤ 𝜃 ≤ 𝜋. 𝜋 4 cos−1 (cos (− )) = cos−1 (− 3𝜋 √2 )= 2 4 (B) We find an angle 𝜃 such that 0 ≤ 𝜃 ≤ 𝜋. cos−1 (cos ( 3𝜋 3𝜋 √2 )) = cos−1 (− ) = 4 2 4 5𝜋 (A) cos−1 (cos ( 4 )) 5𝜋 (B) cos−1 (cos ( 6 )) 52 2017 MATH 1112: DR.YOU Example 9 Your Turn 9 Find the exact value of Find the exact value of cos−1 (sin ( 5𝜋 )) 4 (A) sin−1 (cos (− 7𝜋 )) 6 We find an angle 𝜃 such that 0 ≤ 𝜃 ≤ 𝜋. 5𝜋 3𝜋 √2 cos−1 (sin ( )) = cos −1 (− ) = 4 2 4 𝜋 (B) cos−1 (tan (− 4 )) 7𝜋 (C) cos−1 (sin ( 6 )) 53 2017 MATH 1112: DR.YOU Example 10 Your Turn 10 Find the exact value of Find the exact value of 5 5 (A) cos (tan−1 (12)) (B) tan (cos −1 (− 13)) 5 𝜋 (A) Let 𝜃 = tan−1 (12). Then − 2 ≤ 𝜃 ≤ 5 (A) cos (tan−1 (12)) 3 (B) tan (cos −1 (− 5)) 𝜋 2 We find a point in the terminal side of 𝜃 𝑥 = 12, 𝑦 = 5 in I quadrant 𝑥 𝑦 𝑟 12 5 13 5 12 cos (tan−1 ( )) = cos 𝜃 = 12 13 (C) cot (cos −1 (− (B) Let 𝜃 = cos−1 (− 5 ). 13 Then 0 ≤ 𝜃 ≤ 𝜋 We find a point in the terminal side of 𝜃 𝑥 = −5, 𝑟 = 13 in II quadrant 𝑥 𝑦 𝑟 −5 12 13 tan (cos−1 (− 5 12 )) = tan 𝜃 = − 13 5 7 )) 25 3 4 (D) sin (tan−1 (− )) 54 2017 MATH 1112: DR.YOU LECTURE 2-2 TRIGONOMETRY IDENTITIES AND SUM/DIFFERENCE FORMULA FUNDAMENTAL IDENTITIES tan 𝜃 = sin 𝜃 cos 𝜃 cot 𝜃 = sin2 𝑥 + cos2 𝑥 = 1 1 cos 𝜃 = tan 𝜃 sin 𝜃 csc 𝜃 = 1 sin 𝜃 tan2 𝑥 + 1 = sec 2 𝑥 sec 𝜃 = cot 2 𝑥 + 1 = csc 2 𝑥 EVEN/ODD FUNCTIONS Odd: Symmetry with respect to origin Even: Symmetry with respect to 𝒚 -axis sin(−𝜃) = − sin(𝜃) csc(−𝜃) = − csc(𝜃) tan(−𝜃) = − tan(𝜃) cot(−𝜃) = − cot(𝜃) cos(−𝜃) = cos(𝜃) sec(−𝜃) = sec(−𝜃) Example 1 Your Turn 1 Find the exact value of the expression. Find the exact value of the expression. (A) sin2(50°) + cos2(50°) (A) cos2 (179°) + sin2(179°) (B) tan2 (49°) − sec 2(49°) (A) sin2(50°) + cos2(50°) = 1 (B) tan2 (49°) − sec 2(49°) = sec 2 (49°) − 1 − sec 2 (49°) 1 cos 𝜃 (B) sec 2(130°) − tan2 (130°) = −1 (C) csc 2(68°) − cot 2(68°) 55 2017 MATH 1112: DR.YOU Example 2 Your Turn 2 Find the exact value of the expression. Find the exact value of the expression. (A) sin(−30°) (B) cos(−30°) (A) sin(−45°) (B) cos(−120°) (C) tan(−30°) (D) sec(−60°) 1 (A) sin(−30°) = − sin(30°) = − 2 (B) cos(−30°) = cos(30°) = √3 2 Sum and sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + cos 𝑎 sin 𝑏 difference sin(𝑎 − 𝑏) = sin 𝑎 cos 𝑏 − cos 𝑎 sin 𝑏 Formulas cos(𝑎 + 𝑏) = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏 cos(𝑎 − 𝑏) = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 tan(𝑎 + 𝑏) = tan 𝑎 + tan 𝑏 1 − tan 𝑎 tan 𝑏 tan(𝑎 − 𝑏) = tan 𝑎 − tan 𝑏 1 + tan 𝑎 tan 𝑏 Example 3 Your Turn 3 Find the exact value of each expression. Find the exact value of each expression. (A) sin(20°) cos(10°) + cos(20°) sin(10°) (A) sin(40°) cos(50°) + cos(40°) sin(50°) (B) sin(20°) cos(80°) − cos(20°) sin(80°) sin(20°) cos(10°) + cos(20°) sin(10°) = sin(20° + 10°) = sin(30°) 1 (B) sin(79°) cos(31°) − cos(79°) sin(31°) =2 sin(20°) cos(80°) − cos(20°) sin(80°) = sin(20° − 80°) = sin(−60°) =− √3 2 56 2017 MATH 1112: DR.YOU Example 4 Your Turn 4 Find the exact value of each expression. Find the exact value of each expression. (A) cos(70°) cos(20°) + sin(20°) sin(20°) (B) cos(50°) cos(10°) − sin(50°) sin(10°) 3𝜋 𝜋 3𝜋 𝜋 𝜋 𝜋 𝜋 𝜋 (A) cos ( 8 ) cos ( 8 ) + sin ( 8 ) sin ( 8 ) cos(70°) cos(25°) + sin(70°) sin(25°) = cos(70° − 25°) = cos(45°) = √2 2 (B) cos (12) cos ( 4 ) − sin (12) sin ( 4 ) cos(50°) cos(10°) − sin(50°) sin(10°) = cos(50° + 10°) = cos(60°) = 1 2 Example 5 Your Turn 5 Find the exact value of each expression. Find the exact value of each expression. tan(20°) + tan(25°) 1 − tan(20°) tan(25°) (A) tan(40°)−tan(10°) 1+tan(40°) tan(10°) (B) 5𝜋 𝜋 )+tan( ) 12 4 5𝜋 𝜋 1−tan( ) tan( ) 12 4 tan(20°) + tan(25°) 1 − tan(20°) tan(25°) = tan(20° + 25°) = tan(45°) =1 tan( 57 2017 MATH 1112: DR.YOU Example 6 Your Turn 6 Find the exact value of Find the exact value of sin(30° + 45°) sin(60° − 45°) sin(30° + 45°) = sin(30°) cos(45°) + cos(30°) sin(45°) = 1 √2 √3 √2 ∙ + ∙ 2 2 2 2 = √2 + √6 4 Example 7 Your Turn 7 Find the exact value of Find the exact value of cos(135° + 60°) cos(45° − 30°) cos(135° + 60°) = cos(135°) cos(60°) − sin(135°) sin(60°) = (− = √2 1 √2 √3 ∙ )∙ − 2 2 2 2 −√2 + √6 4 Example 8 Your Turn 8 Find the exact value of Find the exact value of tan(30° − 45°) tan(30° − 45°) = = = tan(30°) − tan(45°) 1 + tan(30°) tan(45°) √3 −1 3 √3 1+ ∙1 3 √3−3 √3 = 3+ −12−6√3 6 = (√3−3)(3−√3) (3+√3)(3−√3) = −2 − √3 tan(45° − 60°) 58 2017 MATH 1112: DR.YOU Example 9 Your Turn 9 Find the exact value of Find the exact value of sin(105°) sin(75°) sin(105°) = sin(60° + 45°) = sin(60°) cos(45°) + cos(60°) sin(45°) = √3 √2 1 √2 ∙ + ∙ 2 2 2 2 = √6 + √2 4 Example 10 Your Turn 10 Find the exact value of Find the exact value of cos(285°) cos(285°) = cos(240° + 45°) = cos(240°) cos(45°) − sin(240°) sin(45°) 1 √2 √3 √2 = (− ) ∙ − (− ) ∙ 2 2 2 2 = −√2 + √6 4 cos ( 7𝜋 ) 12 59 2017 MATH 1112: DR.YOU Example 11 Your Turn 11 Find the exact value of Find the exact value of tan(165°) tan(15°) tan(15°) = tan(45° − 30°) = tan(45°) − tan(30°) 1 + tan(45°) tan(30°) = √3 3 √3 1+ ∙1 3 = 3−√3 3+√3 = (3−√3)(3−√3) = 12+6√3 6 1− (3+√3)(3−√3) = 2 + √3 Your Turn Your Turn Find the exact value of Find the exact value of 17𝜋 sin ( ) 12 cos (− 5𝜋 ) 12 60 2017 MATH 1112: DR.YOU Example 12 Your Turn 12 Simplify the expression by using sum and difference Simplify the expression by using sum and difference formula. formula. sin(7𝑥) cos(3𝑥) + cos(7𝑥) sin(3𝑥) (A) cos(2𝑥) cos(5𝑥) + sin(2𝑥) sin(5𝑥) sin(7𝑥) cos(3𝑥) + cos(7𝑥) sin(3𝑥) (B) sin(5𝑥) cos(2𝑥) − cos(5𝑥) sin(2𝑥) = sin(7𝑥 + 3𝑥) = sin(10𝑥) Example 13 Your Turn 13 Find the exact value of sin(𝛼 + 𝛽) when Find the exact value of sin(𝛼 − 𝛽) when 3 sin 𝛼 = 5 , 0 < 𝛼 < 𝜋 2 12 𝜋 and cos 𝛽 = 13 , − 2 < 𝛽 < 0 We find points on terminal side which is corresponding to angles 𝛼 and 𝛽. 𝑥 𝑦 𝑟 𝛼:I +4 +3 5 𝛽 : IV +12 −5 13 quadrant sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 3 12 4 5 = ( ) ( ) + ( ) (− ) 5 13 5 13 = 16 65 4 cos 𝛼 = 5 , 0 < 𝛼 < 𝜋 2 3 𝜋 and sin 𝛽 = − 5 , − 2 < 𝛽 < 0. 61 2017 MATH 1112: DR.YOU Your Turn Your Turn Find the exact value of cos(𝛼 + 𝛽) when Find the exact value of cos(𝛼 − 𝛽) when 4 tan 𝛼 = − 3 , 𝜋 2 1 𝜋 < 𝛼 < 𝜋 and cos 𝛽 = 2 , 0 < 𝛽 < 2 . Example 14 5 𝜋 Your Turn 14 𝜋 2 Verify the identity sin ( + 𝑥) = cos 𝑥 3 sin 𝛼 = − 13 , − 2 < 𝛼 < 0 and cos 𝛽 = 5 , 0 < 𝛽 < Verify the identity: cos(𝜋 − 𝑥) = − cos 𝑥 𝜋 2 62 2017 MATH 1112: DR.YOU Example 15 Your Turn 15 Find the exact value of Find the exact value of 1 3 sin [cos−1 ( ) + sin−1 (− )] 2 5 1 4 5 cos [tan−1 ( ) + cos −1 ( )] 3 13 3 Let 𝛼 = cos −1 (2) and 𝛽 = sin−1 (− 5). We find points on terminal side which is corresponding to angles 𝛼 and 𝛽. 𝑥 𝑦 𝑟 𝛼:I +1 +√3 2 𝛽 : IV +4 −3 5 quadrant 1 3 sin [cos−1 ( ) + sin−1 (− )] 2 5 = sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 =( = 1 3 √3 4 ) ( ) + ( ) (− ) 2 5 2 5 4√3 − 3 10 63 2017 MATH 1112: DR.YOU Your Turn Your Turn Find the exact value of Find the exact value of 4 5 cos [tan−1 ( ) + cos−1 ( )] 3 13 3 4 sin [sin−1 ( ) + cos−1 (− )] 5 5 64 2017 MATH 1112: DR.YOU LECTURE 2-3 HALF/DOUBLE FORMULA sin(2𝜃) = 2 sin 𝜃 cos 𝜃 Double angle Formulas tan(2𝜃) = cos(2𝜃) = cos 2 𝜃 − sin2 𝜃 Half angle cos(2𝜃) = 2 cos2 𝜃 − 1 𝜃 1 − cos 𝜃 sin ( ) = ±√ 2 2 Formulas 2 tan 𝜃 1 − tan2 𝜃 cos(2𝜃) = 1 − 2 sin2 𝜃 𝜃 1 − cos 𝜃 tan ( ) = 2 sin 𝜃 𝜃 1 + cos 𝜃 cos ( ) = ±√ 2 2 𝜃 (the sign is determined by the quadrant of 2 ) Example 1 Your Turn 1 Find the exact value of cos(2𝜃) if Find the exact value of cos(2𝜃) if sin(𝜃) = 5 13 3 (A) cos(𝜃) = − 5 cos(2𝜃) = 1 − 2 sin2 𝜃 3 5 2 = 1 − 2( ) 13 = (B) sin(𝜃) = 7 119 169 Example 2 Your Turn 2 Find the exact value of sin(2𝜃) if Find the exact value of sin(2𝑥) if 3 sin(𝜃) = , 5 𝜋 <𝜃<𝜋 2 cos(𝜃) = We find a point on terminal side which is corresponding to angle 𝜃. quadrant 𝜃 : II 𝑥 𝑦 𝑟 −4 +3 5 3 4 24 sin(2𝜃) = 2 sin(𝜃) cos(𝜃) = 2 ( ) (− ) = − 5 5 25 12 , 13 0<𝜃< 𝜋 2 65 2017 MATH 1112: DR.YOU Example 3 Your Turn 3 Find the exact value of 2 sin(15°) cos(15°) Find the exact value of 2 sin(22.5°) cos(22.5°) 2 sin(15°) cos(15°) = sin(2 ∙ 15°) = sin(30°) 1 =2 Example 4 Your Turn 4 Find the exact value of cos2 (75°) − sin2(75°) Find the exact value of (A) cos2 (105°) − sin2(105°) cos2 (75°) − sin2(75°) = cos(2 ∙ 75°) (B) 2 cos2 (15°) − 1 = cos(150°) = √3 2 (C) 1 − 2 sin2(22.5°) Example 5 Your Turn 5 Find the exact value of sin(−22.5°) by half-angle Find the exact value of cos(15°) by half-angle formula. formula. Since −22.5° is in IV quadrant, the value of sine is negative; −45° sin(−22.5°) = sin ( ) 2 = 1 − cos(−45°) 1 − √2⁄2 √ = −√ 2 2 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞 − ⏟ √2 − √2 2 − √2 = −√ =− 4 2 66 2017 MATH 1112: DR.YOU Your Turn Your Turn Find the exact value of sin(75°) by half-angle formula. Find the exact value of cos(112.5°) by half-angle formula. Example 6 Your Turn 6 𝜋 8 Find the exact value of sin ( ) by half-angle formula. 𝜋 12 Find the exact value of cos ( ) by half-angle formula. 67 2017 MATH 1112: DR.YOU Example 7 Your Turn 7 Find the exact value of tan(15°) by half-angle formula. Find the exact value of tan(22.5°) by half-angle formula. 30° tan(15°) = tan ( ) 2 1 − cos(30°) = sin(30°) √3 1− 2 = 1 2 = 2 − √3 Sum to product Formulas Product to Sum Formulas 𝑎+𝑏 𝑎−𝑏 ) cos ( ) 2 2 𝑎−𝑏 𝑎+𝑏 sin 𝑎 − sin 𝑏 = 2 sin ( ) cos ( ) 2 2 1 sin 𝑎 sin 𝑏 = {cos(𝑎 − 𝑏) − cos(𝑎 + 𝑏)} 2 1 sin 𝑎 cos 𝑏 = {sin(𝑎 + 𝑏) + sin(𝑎 − 𝑏)} 2 sin 𝑎 + sin 𝑏 = 2 sin ( 𝑎+𝑏 𝑎−𝑏 cos 𝑎 + cos 𝑏 = 2 cos ( ) cos ( ) 2 2 𝑎+𝑏 𝑎−𝑏 cos 𝑎 − cos 𝑏 = −2 sin ( ) sin ( ) 2 2 1 cos 𝑎 cos 𝑏 = {cos(𝑎 − 𝑏) + cos(𝑎 + 𝑏)} 2 Example 8 Your Turn 8 Find the exact value of sin(75°) + sin(15°) Find the exact value of cos(225°) − cos(195°) sin(75°) + sin(15°) = 2 sin ( 75° + 15° 75° − 15° ) cos ( ) 2 2 = 2 sin(45°) cos(30°) = 2( = √2 2 √2 1 )( ) 2 2 68 2017 MATH 1112: DR.YOU Example 9 Your Turn 9 Find the exact value of sin(195°) ∙ cos(75°) Find the exact value of cos(285°) ∙ cos(195°) sin(195°) ∙ cos(75°) 1 = {sin(195° + 75°) + sin(195° − 75°)} 2 1 = {sin(270°) + sin(120°)} 2 1 = 2 {−1 + = √3 } 2 −2+√3 4 Example 10 Your Turn 10 Simplify the expression by using sum to product formula Simplify the expression by using sum to product formula cos(5𝑥) − cos(𝑥) sin(2𝑥) − sin(4𝑥) sin(2𝑥) − sin(4𝑥) = 2 sin ( 2𝑥 − 4𝑥 2𝑥 + 4𝑥 ) cos ( ) 2 2 = 2 sin(−𝑥) cos(3𝑥) = 2 sin(𝑥) cos(3𝑥) Your Turn Your Turn Simplify the expression by using sum to product formula Simplify the expression by using sum to product formula sin(𝑥) + sin(3𝑥) cos(𝑥) + cos(5𝑥) 69 2017 MATH 1112: DR.YOU Example 11 Your Turn 11 Simplify the expression by using product to sum formula Simplify the expression by using product to sum formula cos(10𝑥) ∙ sin(6𝑥) sin(6𝑥) ∙ cos(2𝑥) cos(10𝑥) ∙ sin(6𝑥) = sin(6𝑥) ∙ cos(10𝑥) 1 = {sin(6𝑥 + 10𝑥) + sin(6𝑥 − 10𝑥)} 2 1 = {sin(16𝑥) + sin(−4𝑥)} 2 1 = {sin(16𝑥) − sin(4𝑥)} 2 Your Turn Your Turn Simplify the expression by using product to sum formula Simplify the expression by using product to sum formula cos(3𝑥) ∙ cos(5𝑥) sin(4𝑥) ∙ sin(2𝑥) 70 2017 MATH 1112: DR.YOU LECTURE 2-4 IDENTITIES Fundamental Identities Half angle Formulas tan 𝜃 = sin 𝜃 cos 𝜃 cot 𝜃 = cos 𝜃 sin 𝜃 cot 𝜃 = 1 tan 𝜃 csc 𝜃 = sin2 𝜃 + cos 2 𝜃 = 1 tan2 𝜃 + 1 = sec 2 𝜃 𝜃 1 − cos 𝜃 sin ( ) = ±√ 2 2 𝜃 1 + cos 𝜃 cos ( ) = ±√ 2 2 1 sin 𝜃 sec 𝜃 = 1 cos 𝜃 cot 2 𝜃 + 1 = csc 2 𝜃 𝜃 1 − cos 𝜃 tan ( ) = 2 sin 𝜃 𝜃 Formulas ( the sign is determined by the quadrant of 2 ) 2 tan 𝜃 sin(2𝜃) = 2 sin 𝜃 cos 𝜃 tan(2𝜃) = 1 − tan2 𝜃 Sum and sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + cos 𝑎 sin 𝑏 difference sin(𝑎 − 𝑏) = sin 𝑎 cos 𝑏 − cos 𝑎 sin 𝑏 Formulas cos(𝑎 + 𝑏) = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏 Double angle cos(2𝜃) = cos 2 𝜃 − sin2 𝜃 cos(2𝜃) = 2 cos2 𝜃 − 1 cos(𝑎 − 𝑏) = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 Sum to product Formulas Product to Sum Formulas 𝑎+𝑏 𝑎−𝑏 ) cos ( ) 2 2 𝑎−𝑏 𝑎+𝑏 sin 𝑎 − sin 𝑏 = 2 sin ( ) cos ( ) 2 2 1 sin 𝑎 sin 𝑏 = {cos(𝑎 − 𝑏) − cos(𝑎 + 𝑏)} 2 1 sin 𝑎 cos 𝑏 = {sin(𝑎 + 𝑏) + sin(𝑎 − 𝑏)} 2 sin 𝑎 + sin 𝑏 = 2 sin ( cos(2𝜃) = 1 − 2 sin2 𝜃 tan(𝑎 + 𝑏) = tan 𝑎 + tan 𝑏 1 − tan 𝑎 tan 𝑏 tan(𝑎 − 𝑏) = tan 𝑎 − tan 𝑏 1 + tan 𝑎 tan 𝑏 𝑎+𝑏 𝑎−𝑏 cos 𝑎 + cos 𝑏 = 2 cos ( ) cos ( ) 2 2 𝑎+𝑏 𝑎−𝑏 cos 𝑎 − cos 𝑏 = −2 sin ( ) sin ( ) 2 2 1 cos 𝑎 cos 𝑏 = {cos(𝑎 − 𝑏) + cos(𝑎 + 𝑏)} 2 Example 1 Your Turn 1 Establish the identity Establish the identity cos 𝜃 (tan 𝜃 + cot 𝜃) = csc 𝜃 csc 𝜃 ∙ cos 𝜃 = cot 𝜃 71 2017 MATH 1112: DR.YOU Example 2 Your Turn 2 Establish the identity Establish the identity cos2 𝜃 (1 + tan2 𝜃) = 1 (sec 𝜃 − 1)(sec 𝜃 + 1) = tan2 𝜃 Example 3 Your Turn 3 Establish the identity Establish the identity 9 sec2 𝜃 − 5 tan2 𝜃 = 5 + 4 sec2 𝜃 3 sin2 𝜃 + 4 cos2 𝜃 = 3 + cos2 𝜃 72 2017 MATH 1112: DR.YOU Example 4 Your Turn 4 Establish the identity Establish the identity 1 − sin 𝜃 = (sec 𝜃 + tan 𝜃)2 1 + sin 𝜃 1− Example 5 Your Turn 5 Establish the identity Establish the identity 1 − sin 𝜃 cos 𝜃 = cos 𝜃 1 − sin 𝜃 sin2 𝜃 1 + cos 𝜃 = cos 𝜃 cos 𝜃 = sec 𝜃 − tan 𝜃 1 + sin 𝜃 73 2017 MATH 1112: DR.YOU REVIEW PROBLEMS FOR EXAM 2 1. Find the exact value of the following expression in radian. (A) cos−1 (− √3 ) 2 (B) sin−1 (− (C) tan−1 (√3) √2 ) 2 2. Find the exact value of the expression in radian without using a calculator. 14𝜋 )) 3 9𝜋 (A) sin−1 (sin ( 9𝜋 (B) cos−1 (cos ( 4 )) (C) sin−1 (sin ( 8 )) 3. Find the exact value of the following expression. 3 12 (A) cot (sin−1 (− 5)) 1 (C) sec (tan−1 (2)) (B) tan (cos −1 (− 13)) 3 5 4. Find the exact value of the following expression: sin [sin−1 (5) − cos −1 (− 13)] 3 5. Given cos 𝑎 = − 5 , 𝜋 2 5 ≤ 𝑎 ≤ 𝜋 and sin 𝑏 = − 13 , 24 3𝜋 2 ≤ 𝑏 ≤ 2𝜋, find sin(𝑎 + 𝑏). 5 6. Given cos 𝑎 = − 25 with 𝑎 in quadrant II and sin 𝑏 = − 13 with 𝑏 in qudrant IV, find cos(𝑎 + 𝑏) 5𝜋 2𝜋 5𝜋 2𝜋 7. Find the exact value of sin ( 18 ) cos ( 18 ) − cos ( 18 ) sin ( 18 ). 8. Write sin(3𝑥) ∙ cos(4𝑥) + cos(3𝑥) ∙ sin(4𝑥) in terms of a single trigonometric function. 9. Write sin(2𝑥) cos(3𝑥) − cos(2𝑥) sin(3𝑥) in terms of a single trigonometric function. 10. Using a Sum or Difference Identity, find the exact value cos(105°) 4 5 𝜋 2 11. Find the exact value of cos(2𝜃) given sin 𝜃 = and 0 < 𝜃 < . 𝜋 12. Using a half-angle Identity, find the exact value sin (− 12) 13. Use a half-angle identity to evaluate tan(22.5°). 14. Find the exact value of 5𝜋 𝜋 3𝜋 (A) cos ( 12 ) cos (12) 15. Simplify: (sin 𝜃+cos 𝜃)2 −1 sin 𝜃 cos 𝜃 16. Establish the identity: 𝜋 (B) sin ( 8 ) cos ( 8 ) 1−sin 𝜃 cos 𝜃 cos 𝜃 + 1−sin 𝜃 = 2 sec 𝜃. 74 2017 MATH 1112: DR.YOU SOLUTIONS: √3 ) 2 with √2 ) 2 with − 2 < 𝑥 < 0. Since sin 𝜃 = − 1. (A) Let 𝜃 = cos−1 (− 𝜋 2 < 𝑥 < 𝜋. Since cos 𝜃 = − √3 2 and 𝜃 is in the second quadrant, 𝜃 = 5𝜋 6 by using the unit circle. (B) Let 𝜃 = sin−1 (− 𝜋 √2 2 and 𝜃 is negative in the fourth quadrant, 𝜃 = 𝜋 − 4 by using the unit circle. 𝜋 (C) Let 𝜃 = tan−1(√3) with 0 < 𝑥 < 2 . Since tan 𝜃 = √3 and 𝜃 is in the first quadrant, 𝜃 = 𝜋 3 by using the unit circle. 2. (A) Since angle 𝜋 . 3 14𝜋 3 𝜋 2 𝜋 2 is not in the interval − < 𝑥 < , we may not simply cancel the sine and sine inverse function. The 14𝜋 2𝜋 ~ 3 3 lies in quadrant II. Reflect this angle over the 𝑦-axis into quadrant I and its corresponding angle is Then 14𝜋 2𝜋 𝜋 sin−1 (sin ( )) = sin−1 (sin ( )) = 3 3 3 (B) Since 9𝜋 4 The angle 9𝜋 𝜋 ~ 4 4 (C) Since 9𝜋 8 angle 9𝜋 8 𝜋 𝜋 is not in the interval − 2 < 𝑥 < 2 , we may not simply cancel the cosine and cosine inverse function. 9𝜋 4 𝜋 4 lies in quadrant I. Then cos−1 (cos ( )) = cos−1 (cos ( )) = 𝜋 2 𝜋 4 𝜋 2 is not in the interval − < 𝑥 < , we may not simply cancel the sine and sine inverse function. The lies in quadrant III. Reflect this angle over the 𝑦-axis into quadrant IV and its corresponding angle is 𝜋 8 negative − . Then 9𝜋 𝜋 sin−1 (sin ( )) = − 8 8 3 5 𝜋 2 3. (A) Let 𝜃 = sin−1 (− ) with − < 𝑥 < 𝜋 2 : 𝜃 lies in quadrant IV ⇒ 𝑦 = −3, 𝑥 = 4 and 𝑟 = 5 3 𝑥 4 4 cot (sin−1 (− )) = = =− 5 𝑦 −3 3 12 (B) Let 𝜃 = cos−1 (− 13) with 0 < 𝑥 < 𝜋 : 𝜃 lies in quadrant II ⇒ 𝑦 = 5, 𝑥 = −12 and 𝑟 = 13 tan (cos−1 (− 1 2 𝜋 2 (C) Let 𝜃 = tan−1 ( ) with − < 𝑥 < 𝜋 2 12 𝑦 5 )) = = − 13 𝑥 12 : 𝜃 lies in quadrant I ⇒ 𝑦 = 1, 𝑥 = 2 and 𝑟 = √12 + 22 = √5 1 𝑟 √5 sec (tan−1 ( )) = = 2 𝑥 2 75 2017 MATH 1112: DR.YOU 3 5 4. Let 𝑎 = sin−1 (5) and 𝑏 = cos−1 (− 13) quadrant 𝑥 𝑦 𝑟 𝑎: I quadrant 4 3 5 𝑏: II quadrant −5 12 13 3 5 3 5 4 12 33 sin [sin−1 ( ) − cos−1 (− )] = sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + cos 𝑎 sin 𝑏 = ( ) (− ) + ( ) ( ) = 5 13 5 13 5 13 65 5. First, find the corresponding terminal points for each angle; quadrant 𝑥 𝑦 𝑟 𝑎: II quadrant −3 4 5 𝑏: IV quadrant 12 −5 13 4 12 3 5 33 sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + cos 𝑎 sin 𝑏 = ( ) ( ) + (− ) (− ) = 5 13 5 13 65 6. First, find the corresponding terminal points for each angle; quadrant 𝑥 𝑦 𝑟 𝑎: II quadrant −24 7 25 𝑏: IV quadrant −5 12 13 cos(𝑎 + 𝑏) = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏 = (− 5𝜋 18 2𝜋 18 5𝜋 18 2𝜋 18 5𝜋 18 7. sin ( ) cos ( ) − cos ( ) sin ( ) = sin ( − 2𝜋 ) 18 24 5 7 12 36 ) (− ) − ( ) ( ) = 25 13 25 13 325 𝜋 6 = sin ( ) = 1 2 8. sin(3𝑥) ∙ cos(4𝑥) + cos(3𝑥) ∙ sin(4𝑥) = sin(3𝑥 + 4𝑥) = sin(7𝑥) 9. sin(2𝑥) cos(3𝑥) − cos(2𝑥) sin(3𝑥) = sin(2𝑥 − 3𝑥) = sin(−𝑥) = − sin(𝑥) 1 √2 √3 √2 10. cos(60° + 45°) = cos(60°) cos(45°) − sin(60°) sin(45°) = (2) ( 2 ) − ( 2 ) ( 2 ) = 4 2 32 7 11. cos(2𝜃) = 1 − 2 sin2 𝜃 = 1 − 2 (5) = 1 − 25 = − 25 −𝜋⁄6 ) 2 𝜋 𝜋 12. sin (− 12) = sin ( (it is negative since − 6 lies in quadrant IV) 𝜋 6 1−cos(− ) = −√ 2 45° ) 2 13. tan(22.5°) = tan ( = 1− = −√ √3 2 2 1−cos(45°) sin(45°) = −√ = √2 2 √2 2 1− 2−√3 4 = =− 2−√2 √2 √2−√3 2 = √2 − 1 √2−√6 4 76 2017 MATH 1112: DR.YOU 5𝜋 1 𝜋 4𝜋 6𝜋 1 1 1 14. (A) cos ( 12 ) cos (12) = 2 {cos (12) + cos (12)} = 2 {2 + 0} = 4 3𝜋 1 𝜋 4𝜋 2𝜋 1 (B) sin ( 8 ) cos (8 ) = 2 {sin ( 8 ) + sin ( 8 )} = 2 {1 + 15. √2 2 }= 2+√2 4 (sin 𝜃+cos 𝜃)2 −1 sin 𝜃 cos 𝜃 = = sin2 𝜃+2 sin 𝜃 cos 𝜃+cos2 𝜃−1 sin 𝜃 cos 𝜃 2 sin 𝜃 cos 𝜃 sin 𝜃 cos 𝜃 by FOIL since sin2 𝜃 + cos2 𝜃 = 1 =2 16. 1−sin 𝜃 cos 𝜃 + cos 𝜃 1−sin 𝜃 = (1−sin 𝜃)2 cos 𝜃(1−sin 𝜃) = 1−2sin 𝜃+sin2 𝜃 cos 𝜃(1−sin 𝜃) = 1−2 sin 𝜃+sin2 𝜃+cos2 𝜃 cos 𝜃(1−sin 𝜃) 2−2 sin 𝜃 = cos 𝜃(1−sin 𝜃) 2(1−sin 𝜃) + (cos 𝜃)2 cos 𝜃(1−sin 𝜃) cos2 𝜃 + cos 𝜃(1−sin 𝜃) : find the least common denominator : FOIL : Make it one fraction and simplify : since sin2 𝜃 + cos2 𝜃 = 1 = cos 𝜃(1−sin 𝜃) : Factor the numerator and simplify 2 = cos 𝜃 = 2 sec 𝜃 77