Download 2017 Lecture note Trig 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2017 MATH 1112: DR.YOU
CHAPTER 2. ANALYTIC TRIGONOMETRY
LECTURE 1-1 INVERSE TRIGONOMETRIC FUNCTIONS
INVERSE
The function
Inverse function
Domain of inverse
Range of inverse
𝑦 = sin π‘₯
𝑦 = sinβˆ’1 π‘₯ or 𝑦 = arcsin π‘₯
[βˆ’1,1]
πœ‹ πœ‹
[βˆ’ , ]
2 2
𝑦 = cos π‘₯
𝑦 = cos βˆ’1 π‘₯ or 𝑦 = arccos π‘₯
[βˆ’1,1]
[0, πœ‹]
𝑦 = tan π‘₯
𝑦 = tanβˆ’1 π‘₯ or 𝑦 = arctan π‘₯
(βˆ’βˆž, ∞)
𝑦 = csc π‘₯
𝑦 = csc βˆ’1 π‘₯ or 𝑦 = arccsc π‘₯
(βˆ’βˆž, βˆ’1] βˆͺ [1, ∞)
𝑦 = sec π‘₯
𝑦 = sec βˆ’1 π‘₯ or 𝑦 = arcsec π‘₯
(βˆ’βˆž, βˆ’1] βˆͺ [1, ∞)
𝑦 = cot π‘₯
𝑦 = cot βˆ’1 π‘₯ or 𝑦 = arccot π‘₯
(βˆ’βˆž, ∞)
NOTE:
1
csc βˆ’1 π‘₯ = sinβˆ’1 ( ),
π‘₯
1
sec βˆ’1 π‘₯ = cosβˆ’1 ( ),
π‘₯
(0, πœ‹)
1
cot βˆ’1 π‘₯ = tanβˆ’1 ( )
π‘₯
Example 1
Your Turn 1
Find the exact value of
Find the exact value of
1
(A) sinβˆ’1 (2)
(B) sinβˆ’1 (βˆ’
√3
)
2
1
(A) Since 2 > 0, the value of angle πœƒ in the unit circle
1
is in I quadrant such that sin πœƒ = 2
1
2
sinβˆ’1 ( ) =
(B) Since βˆ’
√3
2
πœ‹
6
< 0, the value of angle πœƒ in unit circle
is in IV quadrant and negative such that sin πœƒ =
βˆ’
√3
2
sinβˆ’1 (βˆ’
πœ‹
√3
)=βˆ’
2
3
πœ‹ πœ‹
(βˆ’ , )
2 2
πœ‹ πœ‹
𝑦≠0
[βˆ’ , ] ,
2 2
πœ‹
[0, πœ‹],
𝑦≠
2
(A) sinβˆ’1 (βˆ’
√2
)
2
(B) sinβˆ’1 (1)
48
2017 MATH 1112: DR.YOU
Example 2
Your Turn 2
Find the exact value of
Find the exact value of
√2
(B) cosβˆ’1 (βˆ’
(A) cosβˆ’1 ( 2 )
(A) Since
√2
2
1
(A) cosβˆ’1 (βˆ’ 2)
cosβˆ’1 (
√3
2
√2
.
2
πœ‹
√2
)=
2
4
< 0, the value of angle πœƒ in unit circle
is in II quadrant such that cos πœƒ = βˆ’
cosβˆ’1 (βˆ’
√3
.
2
5πœ‹
√3
)=
2
6
Example 3
Your Turn 3
Find the exact value of
Find the exact value of
(A) tanβˆ’1(1)
(B) tanβˆ’1(βˆ’βˆš3)
(A) Since 1 > 0, the value of angle πœƒ in the unit circle
is in I quadrant such that tan πœƒ = 1.
πœ‹
tanβˆ’1 (1) =
4
(B) Since βˆ’βˆš3 < 0, the value of angle πœƒ in unit circle
is in IV quadrant and negative such that sin πœƒ =
βˆ’
√2
(B) cosβˆ’1 ( 2 )
> 0, the value of angle πœƒ in unit circle is
in II quadrant such that cos πœƒ =
(B) Since βˆ’
√3
)
2
√3
2
tanβˆ’1 (βˆ’βˆš3) = βˆ’
πœ‹
3
(A) tanβˆ’1(βˆ’1)
1
(B) tanβˆ’1 ( 3)
√
49
2017 MATH 1112: DR.YOU
Example 4
Your Turn 4
Use a calculator to find exact value of the following in
Use a calculator to find exact value of the following in
degree. Round four decimal place.
radian. Round four decimal place.
4
12
(A) sinβˆ’1 (9)
(B) cosβˆ’1 (βˆ’ 13)
(C) sinβˆ’1 (1.2)
(D) tanβˆ’1(4)
(A) sinβˆ’1 (9)
(B) cosβˆ’1 (βˆ’0.6)
(C) cosβˆ’1 (2)
(D) tanβˆ’1(6)
5
4
(A) sinβˆ’1 (9) β‰ˆ 26.3978°
12
(B) cosβˆ’1 (βˆ’ 13) β‰ˆ 157.3801°
(C) sinβˆ’1 (1.2) is undefined: error since there are no
angles πœƒ such that sin πœƒ = 1.2.
(D) tanβˆ’1(4) = 75.9638°
Example 5
Your Turn 5
Use a calculator to find exact value of the following in
Use a calculator to find exact value of the following in
degree. Round four decimal place.
radian. Round four decimal place.
3
(A) cscβˆ’1 (2)
5
(B) secβˆ’1 (βˆ’ 3)
3
(A) We find angle πœƒ such that csc πœƒ = 2
2
2
β‡’ πœƒ = sinβˆ’1 ( )
3
3
3
2
cscβˆ’1 ( ) = sinβˆ’1 ( ) = 41.8103°
2
3
sin πœƒ =
5
(B) We find angle πœƒ such that sec πœƒ = βˆ’ 3
3
3
β‡’ πœƒ = cosβˆ’1 (βˆ’ )
5
5
5
3
secβˆ’1 (βˆ’ ) = cosβˆ’1 (βˆ’ ) = 126.8699°
3
5
cos πœƒ = βˆ’
(A) cscβˆ’1 (1.2)
(B) cotβˆ’1 (3)
50
2017 MATH 1112: DR.YOU
THE RELATION BETWEEN INVERSE FUNCTIONS
Functions
relation
sinβˆ’1(sin πœƒ) = πœƒ ,
βˆ’
Sine function
Cosine function
πœ‹
πœ‹
β‰€πœƒβ‰€
2
2
sin(sinβˆ’1 𝐴) = 𝐴,
βˆ’1 ≀ 𝐴 ≀ 1
cosβˆ’1(cos πœƒ) = πœƒ ,
0β‰€πœƒβ‰€πœ‹
cos(cosβˆ’1 𝐴) = 𝐴,
βˆ’1 ≀ 𝐴 ≀ 1
tanβˆ’1 (tan πœƒ) = πœƒ,
βˆ’
tan(tanβˆ’1 𝐴) = 𝐴,
βˆ’βˆž < 𝐴 < ∞
Tangent function
πœ‹
πœ‹
<πœƒ<
2
2
Example 6
Your Turn 6
Find the exact value of
Find the exact value of
πœ‹
2πœ‹
(A) sinβˆ’1 (sin ( 3 ))
(C) sinβˆ’1 (sin (βˆ’
(B) sinβˆ’1 (sin ( 3 ))
2πœ‹
))
3
πœ‹
πœ‹
(A) We find an angle πœƒ such that βˆ’ 2 ≀ πœƒ ≀ 2 .
πœ‹
πœ‹
√3
sinβˆ’1 (sin ( )) = sinβˆ’1 ( ) =
3
2
3
πœ‹
πœ‹
(B) We find an angle πœƒ such that βˆ’ 2 ≀ πœƒ ≀ 2 .
2πœ‹
√3
√3
sinβˆ’1 (sin ( )) = sinβˆ’1 ( ) =
3
2
2
2πœ‹
πœ‹
sinβˆ’1 (sin ( )) =
3
3
πœ‹
πœ‹
(C) We find an angle πœƒ such that βˆ’ 2 ≀ πœƒ ≀ 2 .
sinβˆ’1 (sin (βˆ’
2πœ‹
πœ‹
√3
)) = sinβˆ’1 (βˆ’ ) = βˆ’
3
2
3
(Warning: not
5πœ‹
3
πœ‹
πœ‹
since βˆ’ 2 ≀ πœƒ ≀ 2 )
4πœ‹
(A) sinβˆ’1 (sin ( 3 ))
πœ‹
(B) sinβˆ’1 (sin (βˆ’ 6 ))
51
2017 MATH 1112: DR.YOU
Example 7
Your Turn 7
Find the exact value of
Find the exact value of
5πœ‹
(A) tanβˆ’1 (tan ( 4 ))
πœ‹
(B) tanβˆ’1 (tan (βˆ’ 3 ))
πœ‹
2πœ‹
(A) tanβˆ’1 (tan ( 3 ))
(B) tanβˆ’1 (tan (βˆ’
11πœ‹
))
6
πœ‹
(A) We find an angle πœƒ such that βˆ’ 2 ≀ πœƒ ≀ 2 .
5πœ‹
πœ‹
tanβˆ’1 (tan ( )) = tanβˆ’1 (1) = βˆ’
4
4
πœ‹
πœ‹
(B) We find an angle πœƒ such that βˆ’ 2 ≀ πœƒ ≀ 2 .
πœ‹
πœ‹
tanβˆ’1 (tan (βˆ’ )) = tanβˆ’1(βˆ’βˆš3) = βˆ’
3
3
Example 8
Your Turn 8
Find the exact value of
Find the exact value of
πœ‹
(A) cosβˆ’1 (cos (βˆ’ 4 ))
3πœ‹
(B) cosβˆ’1 (cos ( 4 ))
(A) We find an angle πœƒ such that 0 ≀ πœƒ ≀ πœ‹.
πœ‹
4
cosβˆ’1 (cos (βˆ’ )) = cosβˆ’1 (βˆ’
3πœ‹
√2
)=
2
4
(B) We find an angle πœƒ such that 0 ≀ πœƒ ≀ πœ‹.
cosβˆ’1 (cos (
3πœ‹
3πœ‹
√2
)) = cosβˆ’1 (βˆ’ ) =
4
2
4
5πœ‹
(A) cosβˆ’1 (cos ( 4 ))
5πœ‹
(B) cosβˆ’1 (cos ( 6 ))
52
2017 MATH 1112: DR.YOU
Example 9
Your Turn 9
Find the exact value of
Find the exact value of
cosβˆ’1 (sin (
5πœ‹
))
4
(A) sinβˆ’1 (cos (βˆ’
7πœ‹
))
6
We find an angle πœƒ such that 0 ≀ πœƒ ≀ πœ‹.
5πœ‹
3πœ‹
√2
cosβˆ’1 (sin ( )) = cos βˆ’1 (βˆ’ ) =
4
2
4
πœ‹
(B) cosβˆ’1 (tan (βˆ’ 4 ))
7πœ‹
(C) cosβˆ’1 (sin ( 6 ))
53
2017 MATH 1112: DR.YOU
Example 10
Your Turn 10
Find the exact value of
Find the exact value of
5
5
(A) cos (tanβˆ’1 (12))
(B) tan (cos βˆ’1 (βˆ’ 13))
5
πœ‹
(A) Let πœƒ = tanβˆ’1 (12). Then βˆ’ 2 ≀ πœƒ ≀
5
(A) cos (tanβˆ’1 (12))
3
(B) tan (cos βˆ’1 (βˆ’ 5))
πœ‹
2
We find a point in the terminal side of πœƒ
π‘₯ = 12, 𝑦 = 5 in I quadrant
π‘₯
𝑦
π‘Ÿ
12
5
13
5
12
cos (tanβˆ’1 ( )) = cos πœƒ =
12
13
(C) cot (cos βˆ’1 (βˆ’
(B) Let πœƒ = cosβˆ’1 (βˆ’
5
).
13
Then 0 ≀ πœƒ ≀ πœ‹
We find a point in the terminal side of πœƒ
π‘₯ = βˆ’5, π‘Ÿ = 13 in II quadrant
π‘₯
𝑦
π‘Ÿ
βˆ’5
12
13
tan (cosβˆ’1 (βˆ’
5
12
)) = tan πœƒ = βˆ’
13
5
7
))
25
3
4
(D) sin (tanβˆ’1 (βˆ’ ))
54
2017 MATH 1112: DR.YOU
LECTURE 2-2 TRIGONOMETRY IDENTITIES AND SUM/DIFFERENCE FORMULA
FUNDAMENTAL IDENTITIES
tan πœƒ =
sin πœƒ
cos πœƒ
cot πœƒ =
sin2 π‘₯ + cos2 π‘₯ = 1
1
cos πœƒ
=
tan πœƒ sin πœƒ
csc πœƒ =
1
sin πœƒ
tan2 π‘₯ + 1 = sec 2 π‘₯
sec πœƒ =
cot 2 π‘₯ + 1 = csc 2 π‘₯
EVEN/ODD FUNCTIONS
Odd: Symmetry with respect to origin
Even: Symmetry with respect to π’š -axis
sin(βˆ’πœƒ) = βˆ’ sin(πœƒ)
csc(βˆ’πœƒ) = βˆ’ csc(πœƒ)
tan(βˆ’πœƒ) = βˆ’ tan(πœƒ)
cot(βˆ’πœƒ) = βˆ’ cot(πœƒ)
cos(βˆ’πœƒ) = cos(πœƒ)
sec(βˆ’πœƒ) = sec(βˆ’πœƒ)
Example 1
Your Turn 1
Find the exact value of the expression.
Find the exact value of the expression.
(A) sin2(50°) + cos2(50°)
(A) cos2 (179°) + sin2(179°)
(B) tan2 (49°) βˆ’ sec 2(49°)
(A) sin2(50°) + cos2(50°) = 1
(B) tan2 (49°) βˆ’ sec 2(49°)
= sec
2 (49°)
βˆ’ 1 βˆ’ sec
2 (49°)
1
cos πœƒ
(B) sec 2(130°) βˆ’ tan2 (130°)
= βˆ’1
(C) csc 2(68°) βˆ’ cot 2(68°)
55
2017 MATH 1112: DR.YOU
Example 2
Your Turn 2
Find the exact value of the expression.
Find the exact value of the expression.
(A) sin(βˆ’30°)
(B) cos(βˆ’30°)
(A) sin(βˆ’45°)
(B) cos(βˆ’120°)
(C) tan(βˆ’30°)
(D) sec(βˆ’60°)
1
(A) sin(βˆ’30°) = βˆ’ sin(30°) = βˆ’ 2
(B) cos(βˆ’30°) = cos(30°) =
√3
2
Sum and
sin(π‘Ž + 𝑏) = sin π‘Ž cos 𝑏 + cos π‘Ž sin 𝑏
difference
sin(π‘Ž βˆ’ 𝑏) = sin π‘Ž cos 𝑏 βˆ’ cos π‘Ž sin 𝑏
Formulas
cos(π‘Ž + 𝑏) = cos π‘Ž cos 𝑏 βˆ’ sin π‘Ž sin 𝑏
cos(π‘Ž βˆ’ 𝑏) = cos π‘Ž cos 𝑏 + sin π‘Ž sin 𝑏
tan(π‘Ž + 𝑏) =
tan π‘Ž + tan 𝑏
1 βˆ’ tan π‘Ž tan 𝑏
tan(π‘Ž βˆ’ 𝑏) =
tan π‘Ž βˆ’ tan 𝑏
1 + tan π‘Ž tan 𝑏
Example 3
Your Turn 3
Find the exact value of each expression.
Find the exact value of each expression.
(A) sin(20°) cos(10°) + cos(20°) sin(10°)
(A) sin(40°) cos(50°) + cos(40°) sin(50°)
(B) sin(20°) cos(80°) βˆ’ cos(20°) sin(80°)
sin(20°) cos(10°) + cos(20°) sin(10°)
= sin(20° + 10°) = sin(30°)
1
(B) sin(79°) cos(31°) βˆ’ cos(79°) sin(31°)
=2
sin(20°) cos(80°) βˆ’ cos(20°) sin(80°)
= sin(20° βˆ’ 80°) = sin(βˆ’60°)
=βˆ’
√3
2
56
2017 MATH 1112: DR.YOU
Example 4
Your Turn 4
Find the exact value of each expression.
Find the exact value of each expression.
(A) cos(70°) cos(20°) + sin(20°) sin(20°)
(B) cos(50°) cos(10°) βˆ’ sin(50°) sin(10°)
3πœ‹
πœ‹
3πœ‹
πœ‹
πœ‹
πœ‹
πœ‹
πœ‹
(A) cos ( 8 ) cos ( 8 ) + sin ( 8 ) sin ( 8 )
cos(70°) cos(25°) + sin(70°) sin(25°)
= cos(70° βˆ’ 25°) = cos(45°)
=
√2
2
(B) cos (12) cos ( 4 ) βˆ’ sin (12) sin ( 4 )
cos(50°) cos(10°) βˆ’ sin(50°) sin(10°)
= cos(50° + 10°) = cos(60°)
=
1
2
Example 5
Your Turn 5
Find the exact value of each expression.
Find the exact value of each expression.
tan(20°) + tan(25°)
1 βˆ’ tan(20°) tan(25°)
(A)
tan(40°)βˆ’tan(10°)
1+tan(40°) tan(10°)
(B)
5πœ‹
πœ‹
)+tan( )
12
4
5πœ‹
πœ‹
1βˆ’tan( ) tan( )
12
4
tan(20°) + tan(25°)
1 βˆ’ tan(20°) tan(25°)
= tan(20° + 25°) = tan(45°)
=1
tan(
57
2017 MATH 1112: DR.YOU
Example 6
Your Turn 6
Find the exact value of
Find the exact value of
sin(30° + 45°)
sin(60° βˆ’ 45°)
sin(30° + 45°)
= sin(30°) cos(45°) + cos(30°) sin(45°)
=
1 √2 √3 √2
βˆ™
+
βˆ™
2 2
2 2
=
√2 + √6
4
Example 7
Your Turn 7
Find the exact value of
Find the exact value of
cos(135° + 60°)
cos(45° βˆ’ 30°)
cos(135° + 60°)
= cos(135°) cos(60°) βˆ’ sin(135°) sin(60°)
= (βˆ’
=
√2 1 √2 √3
βˆ™
)βˆ™ βˆ’
2
2
2 2
βˆ’βˆš2 + √6
4
Example 8
Your Turn 8
Find the exact value of
Find the exact value of
tan(30° βˆ’ 45°)
tan(30° βˆ’ 45°) =
=
=
tan(30°) βˆ’ tan(45°)
1 + tan(30°) tan(45°)
√3
βˆ’1
3
√3
1+ βˆ™1
3
√3βˆ’3
√3
= 3+
βˆ’12βˆ’6√3
6
=
(√3βˆ’3)(3βˆ’βˆš3)
(3+√3)(3βˆ’βˆš3)
= βˆ’2 βˆ’ √3
tan(45° βˆ’ 60°)
58
2017 MATH 1112: DR.YOU
Example 9
Your Turn 9
Find the exact value of
Find the exact value of
sin(105°)
sin(75°)
sin(105°)
= sin(60° + 45°)
= sin(60°) cos(45°) + cos(60°) sin(45°)
=
√3 √2 1 √2
βˆ™
+ βˆ™
2 2
2 2
=
√6 + √2
4
Example 10
Your Turn 10
Find the exact value of
Find the exact value of
cos(285°)
cos(285°)
= cos(240° + 45°)
= cos(240°) cos(45°) βˆ’ sin(240°) sin(45°)
1 √2
√3 √2
= (βˆ’ ) βˆ™
βˆ’ (βˆ’ ) βˆ™
2
2
2
2
=
βˆ’βˆš2 + √6
4
cos (
7πœ‹
)
12
59
2017 MATH 1112: DR.YOU
Example 11
Your Turn 11
Find the exact value of
Find the exact value of
tan(165°)
tan(15°)
tan(15°)
= tan(45° βˆ’ 30°)
=
tan(45°) βˆ’ tan(30°)
1 + tan(45°) tan(30°)
=
√3
3
√3
1+ βˆ™1
3
=
3βˆ’βˆš3
3+√3
=
(3βˆ’βˆš3)(3βˆ’βˆš3)
=
12+6√3
6
1βˆ’
(3+√3)(3βˆ’βˆš3)
= 2 + √3
Your Turn
Your Turn
Find the exact value of
Find the exact value of
17πœ‹
sin (
)
12
cos (βˆ’
5πœ‹
)
12
60
2017 MATH 1112: DR.YOU
Example 12
Your Turn 12
Simplify the expression by using sum and difference
Simplify the expression by using sum and difference
formula.
formula.
sin(7π‘₯) cos(3π‘₯) + cos(7π‘₯) sin(3π‘₯)
(A) cos(2π‘₯) cos(5π‘₯) + sin(2π‘₯) sin(5π‘₯)
sin(7π‘₯) cos(3π‘₯) + cos(7π‘₯) sin(3π‘₯)
(B) sin(5π‘₯) cos(2π‘₯) βˆ’ cos(5π‘₯) sin(2π‘₯)
= sin(7π‘₯ + 3π‘₯)
= sin(10π‘₯)
Example 13
Your Turn 13
Find the exact value of sin(𝛼 + 𝛽) when
Find the exact value of sin(𝛼 βˆ’ 𝛽) when
3
sin 𝛼 = 5 , 0 < 𝛼 <
πœ‹
2
12
πœ‹
and cos 𝛽 = 13 , βˆ’ 2 < 𝛽 < 0
We find points on terminal side which is corresponding to
angles 𝛼 and 𝛽.
π‘₯
𝑦
π‘Ÿ
𝛼:I
+4
+3
5
𝛽 : IV
+12
βˆ’5
13
quadrant
sin(𝛼 + 𝛽)
= sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
3 12
4
5
= ( ) ( ) + ( ) (βˆ’ )
5 13
5
13
=
16
65
4
cos 𝛼 = 5 , 0 < 𝛼 <
πœ‹
2
3
πœ‹
and sin 𝛽 = βˆ’ 5 , βˆ’ 2 < 𝛽 < 0.
61
2017 MATH 1112: DR.YOU
Your Turn
Your Turn
Find the exact value of cos(𝛼 + 𝛽) when
Find the exact value of cos(𝛼 βˆ’ 𝛽) when
4
tan 𝛼 = βˆ’ 3 ,
πœ‹
2
1
πœ‹
< 𝛼 < πœ‹ and cos 𝛽 = 2 , 0 < 𝛽 < 2 .
Example 14
5
πœ‹
Your Turn 14
πœ‹
2
Verify the identity sin ( + π‘₯) = cos π‘₯
3
sin 𝛼 = βˆ’ 13 , βˆ’ 2 < 𝛼 < 0 and cos 𝛽 = 5 , 0 < 𝛽 <
Verify the identity: cos(πœ‹ βˆ’ π‘₯) = βˆ’ cos π‘₯
πœ‹
2
62
2017 MATH 1112: DR.YOU
Example 15
Your Turn 15
Find the exact value of
Find the exact value of
1
3
sin [cosβˆ’1 ( ) + sinβˆ’1 (βˆ’ )]
2
5
1
4
5
cos [tanβˆ’1 ( ) + cos βˆ’1 ( )]
3
13
3
Let 𝛼 = cos βˆ’1 (2) and 𝛽 = sinβˆ’1 (βˆ’ 5).
We find points on terminal side which is corresponding to
angles 𝛼 and 𝛽.
π‘₯
𝑦
π‘Ÿ
𝛼:I
+1
+√3
2
𝛽 : IV
+4
βˆ’3
5
quadrant
1
3
sin [cosβˆ’1 ( ) + sinβˆ’1 (βˆ’ )]
2
5
= sin(𝛼 + 𝛽)
= sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
=(
=
1
3
√3 4
) ( ) + ( ) (βˆ’ )
2
5
2
5
4√3 βˆ’ 3
10
63
2017 MATH 1112: DR.YOU
Your Turn
Your Turn
Find the exact value of
Find the exact value of
4
5
cos [tanβˆ’1 ( ) + cosβˆ’1 ( )]
3
13
3
4
sin [sinβˆ’1 ( ) + cosβˆ’1 (βˆ’ )]
5
5
64
2017 MATH 1112: DR.YOU
LECTURE 2-3 HALF/DOUBLE FORMULA
sin(2πœƒ) = 2 sin πœƒ cos πœƒ
Double angle
Formulas
tan(2πœƒ) =
cos(2πœƒ) = cos 2 πœƒ βˆ’ sin2 πœƒ
Half angle
cos(2πœƒ) = 2 cos2 πœƒ βˆ’ 1
πœƒ
1 βˆ’ cos πœƒ
sin ( ) = ±βˆš
2
2
Formulas
2 tan πœƒ
1 βˆ’ tan2 πœƒ
cos(2πœƒ) = 1 βˆ’ 2 sin2 πœƒ
πœƒ
1 βˆ’ cos πœƒ
tan ( ) =
2
sin πœƒ
πœƒ
1 + cos πœƒ
cos ( ) = ±βˆš
2
2
πœƒ
(the sign is determined by the quadrant of 2 )
Example 1
Your Turn 1
Find the exact value of cos(2πœƒ) if
Find the exact value of cos(2πœƒ) if
sin(πœƒ) =
5
13
3
(A) cos(πœƒ) = βˆ’ 5
cos(2πœƒ)
= 1 βˆ’ 2 sin2 πœƒ
3
5 2
= 1 βˆ’ 2( )
13
=
(B) sin(πœƒ) = 7
119
169
Example 2
Your Turn 2
Find the exact value of sin(2πœƒ) if
Find the exact value of sin(2π‘₯) if
3
sin(πœƒ) = ,
5
πœ‹
<πœƒ<πœ‹
2
cos(πœƒ) =
We find a point on terminal side which is corresponding
to angle πœƒ.
quadrant
πœƒ : II
π‘₯
𝑦
π‘Ÿ
βˆ’4
+3
5
3
4
24
sin(2πœƒ) = 2 sin(πœƒ) cos(πœƒ) = 2 ( ) (βˆ’ ) = βˆ’
5
5
25
12
,
13
0<πœƒ<
πœ‹
2
65
2017 MATH 1112: DR.YOU
Example 3
Your Turn 3
Find the exact value of 2 sin(15°) cos(15°)
Find the exact value of 2 sin(22.5°) cos(22.5°)
2 sin(15°) cos(15°)
= sin(2 βˆ™ 15°)
= sin(30°)
1
=2
Example 4
Your Turn 4
Find the exact value of cos2 (75°) βˆ’ sin2(75°)
Find the exact value of
(A) cos2 (105°) βˆ’ sin2(105°)
cos2 (75°) βˆ’ sin2(75°)
= cos(2 βˆ™ 75°)
(B) 2 cos2 (15°) βˆ’ 1
= cos(150°)
=
√3
2
(C) 1 βˆ’ 2 sin2(22.5°)
Example 5
Your Turn 5
Find the exact value of sin(βˆ’22.5°) by half-angle
Find the exact value of cos(15°) by half-angle formula.
formula.
Since βˆ’22.5° is in IV quadrant, the value of sine is
negative;
βˆ’45°
sin(βˆ’22.5°) = sin (
)
2
=
1 βˆ’ cos(βˆ’45°)
1 βˆ’ √2⁄2
√
= βˆ’βˆš
2
2
𝐧𝐞𝐠𝐚𝐭𝐒𝐯𝐞
βˆ’
⏟
√2 βˆ’ √2
2 βˆ’ √2
= βˆ’βˆš
=βˆ’
4
2
66
2017 MATH 1112: DR.YOU
Your Turn
Your Turn
Find the exact value of sin(75°) by half-angle formula.
Find the exact value of cos(112.5°) by half-angle
formula.
Example 6
Your Turn 6
πœ‹
8
Find the exact value of sin ( ) by half-angle formula.
πœ‹
12
Find the exact value of cos ( ) by half-angle formula.
67
2017 MATH 1112: DR.YOU
Example 7
Your Turn 7
Find the exact value of tan(15°) by half-angle formula.
Find the exact value of tan(22.5°) by half-angle formula.
30°
tan(15°) = tan ( )
2
1 βˆ’ cos(30°)
=
sin(30°)
√3
1βˆ’ 2
=
1
2
= 2 βˆ’ √3
Sum to product
Formulas
Product to Sum
Formulas
π‘Ž+𝑏
π‘Žβˆ’π‘
) cos (
)
2
2
π‘Žβˆ’π‘
π‘Ž+𝑏
sin π‘Ž βˆ’ sin 𝑏 = 2 sin (
) cos (
)
2
2
1
sin π‘Ž sin 𝑏 = {cos(π‘Ž βˆ’ 𝑏) βˆ’ cos(π‘Ž + 𝑏)}
2
1
sin π‘Ž cos 𝑏 = {sin(π‘Ž + 𝑏) + sin(π‘Ž βˆ’ 𝑏)}
2
sin π‘Ž + sin 𝑏 = 2 sin (
π‘Ž+𝑏
π‘Žβˆ’π‘
cos π‘Ž + cos 𝑏 = 2 cos (
) cos (
)
2
2
π‘Ž+𝑏
π‘Žβˆ’π‘
cos π‘Ž βˆ’ cos 𝑏 = βˆ’2 sin (
) sin (
)
2
2
1
cos π‘Ž cos 𝑏 = {cos(π‘Ž βˆ’ 𝑏) + cos(π‘Ž + 𝑏)}
2
Example 8
Your Turn 8
Find the exact value of sin(75°) + sin(15°)
Find the exact value of cos(225°) βˆ’ cos(195°)
sin(75°) + sin(15°)
= 2 sin (
75° + 15°
75° βˆ’ 15°
) cos (
)
2
2
= 2 sin(45°) cos(30°)
= 2(
=
√2
2
√2 1
)( )
2
2
68
2017 MATH 1112: DR.YOU
Example 9
Your Turn 9
Find the exact value of sin(195°) βˆ™ cos(75°)
Find the exact value of cos(285°) βˆ™ cos(195°)
sin(195°) βˆ™ cos(75°)
1
= {sin(195° + 75°) + sin(195° βˆ’ 75°)}
2
1
= {sin(270°) + sin(120°)}
2
1
= 2 {βˆ’1 +
=
√3
}
2
βˆ’2+√3
4
Example 10
Your Turn 10
Simplify the expression by using sum to product formula
Simplify the expression by using sum to product formula
cos(5π‘₯) βˆ’ cos(π‘₯)
sin(2π‘₯) βˆ’ sin(4π‘₯)
sin(2π‘₯) βˆ’ sin(4π‘₯)
= 2 sin (
2π‘₯ βˆ’ 4π‘₯
2π‘₯ + 4π‘₯
) cos (
)
2
2
= 2 sin(βˆ’π‘₯) cos(3π‘₯)
= 2 sin(π‘₯) cos(3π‘₯)
Your Turn
Your Turn
Simplify the expression by using sum to product formula
Simplify the expression by using sum to product formula
sin(π‘₯) + sin(3π‘₯)
cos(π‘₯) + cos(5π‘₯)
69
2017 MATH 1112: DR.YOU
Example 11
Your Turn 11
Simplify the expression by using product to sum formula
Simplify the expression by using product to sum formula
cos(10π‘₯) βˆ™ sin(6π‘₯)
sin(6π‘₯) βˆ™ cos(2π‘₯)
cos(10π‘₯) βˆ™ sin(6π‘₯)
= sin(6π‘₯) βˆ™ cos(10π‘₯)
1
= {sin(6π‘₯ + 10π‘₯) + sin(6π‘₯ βˆ’ 10π‘₯)}
2
1
= {sin(16π‘₯) + sin(βˆ’4π‘₯)}
2
1
= {sin(16π‘₯) βˆ’ sin(4π‘₯)}
2
Your Turn
Your Turn
Simplify the expression by using product to sum formula
Simplify the expression by using product to sum formula
cos(3π‘₯) βˆ™ cos(5π‘₯)
sin(4π‘₯) βˆ™ sin(2π‘₯)
70
2017 MATH 1112: DR.YOU
LECTURE 2-4 IDENTITIES
Fundamental
Identities
Half angle
Formulas
tan πœƒ =
sin πœƒ
cos πœƒ
cot πœƒ =
cos πœƒ
sin πœƒ
cot πœƒ =
1
tan πœƒ
csc πœƒ =
sin2 πœƒ + cos 2 πœƒ = 1
tan2 πœƒ + 1 = sec 2 πœƒ
πœƒ
1 βˆ’ cos πœƒ
sin ( ) = ±βˆš
2
2
πœƒ
1 + cos πœƒ
cos ( ) = ±βˆš
2
2
1
sin πœƒ
sec πœƒ =
1
cos πœƒ
cot 2 πœƒ + 1 = csc 2 πœƒ
πœƒ
1 βˆ’ cos πœƒ
tan ( ) =
2
sin πœƒ
πœƒ
Formulas
( the sign is determined by the quadrant of 2 )
2 tan πœƒ
sin(2πœƒ) = 2 sin πœƒ cos πœƒ
tan(2πœƒ) =
1 βˆ’ tan2 πœƒ
Sum and
sin(π‘Ž + 𝑏) = sin π‘Ž cos 𝑏 + cos π‘Ž sin 𝑏
difference
sin(π‘Ž βˆ’ 𝑏) = sin π‘Ž cos 𝑏 βˆ’ cos π‘Ž sin 𝑏
Formulas
cos(π‘Ž + 𝑏) = cos π‘Ž cos 𝑏 βˆ’ sin π‘Ž sin 𝑏
Double angle
cos(2πœƒ) = cos 2 πœƒ βˆ’ sin2 πœƒ
cos(2πœƒ) = 2 cos2 πœƒ βˆ’ 1
cos(π‘Ž βˆ’ 𝑏) = cos π‘Ž cos 𝑏 + sin π‘Ž sin 𝑏
Sum to product
Formulas
Product to Sum
Formulas
π‘Ž+𝑏
π‘Žβˆ’π‘
) cos (
)
2
2
π‘Žβˆ’π‘
π‘Ž+𝑏
sin π‘Ž βˆ’ sin 𝑏 = 2 sin (
) cos (
)
2
2
1
sin π‘Ž sin 𝑏 = {cos(π‘Ž βˆ’ 𝑏) βˆ’ cos(π‘Ž + 𝑏)}
2
1
sin π‘Ž cos 𝑏 = {sin(π‘Ž + 𝑏) + sin(π‘Ž βˆ’ 𝑏)}
2
sin π‘Ž + sin 𝑏 = 2 sin (
cos(2πœƒ) = 1 βˆ’ 2 sin2 πœƒ
tan(π‘Ž + 𝑏) =
tan π‘Ž + tan 𝑏
1 βˆ’ tan π‘Ž tan 𝑏
tan(π‘Ž βˆ’ 𝑏) =
tan π‘Ž βˆ’ tan 𝑏
1 + tan π‘Ž tan 𝑏
π‘Ž+𝑏
π‘Žβˆ’π‘
cos π‘Ž + cos 𝑏 = 2 cos (
) cos (
)
2
2
π‘Ž+𝑏
π‘Žβˆ’π‘
cos π‘Ž βˆ’ cos 𝑏 = βˆ’2 sin (
) sin (
)
2
2
1
cos π‘Ž cos 𝑏 = {cos(π‘Ž βˆ’ 𝑏) + cos(π‘Ž + 𝑏)}
2
Example 1
Your Turn 1
Establish the identity
Establish the identity
cos πœƒ (tan πœƒ + cot πœƒ) = csc πœƒ
csc πœƒ βˆ™ cos πœƒ = cot πœƒ
71
2017 MATH 1112: DR.YOU
Example 2
Your Turn 2
Establish the identity
Establish the identity
cos2 πœƒ (1 + tan2 πœƒ) = 1
(sec πœƒ βˆ’ 1)(sec πœƒ + 1) = tan2 πœƒ
Example 3
Your Turn 3
Establish the identity
Establish the identity
9 sec2 πœƒ βˆ’ 5 tan2 πœƒ = 5 + 4 sec2 πœƒ
3 sin2 πœƒ + 4 cos2 πœƒ = 3 + cos2 πœƒ
72
2017 MATH 1112: DR.YOU
Example 4
Your Turn 4
Establish the identity
Establish the identity
1 βˆ’ sin πœƒ
= (sec πœƒ + tan πœƒ)2
1 + sin πœƒ
1βˆ’
Example 5
Your Turn 5
Establish the identity
Establish the identity
1 βˆ’ sin πœƒ
cos πœƒ
=
cos πœƒ
1 βˆ’ sin πœƒ
sin2 πœƒ
1 + cos πœƒ
= cos πœƒ
cos πœƒ
= sec πœƒ βˆ’ tan πœƒ
1 + sin πœƒ
73
2017 MATH 1112: DR.YOU
REVIEW PROBLEMS FOR EXAM 2
1. Find the exact value of the following expression in radian.
(A) cosβˆ’1 (βˆ’
√3
)
2
(B) sinβˆ’1 (βˆ’
(C) tanβˆ’1 (√3)
√2
)
2
2. Find the exact value of the expression in radian without using a calculator.
14πœ‹
))
3
9πœ‹
(A) sinβˆ’1 (sin (
9πœ‹
(B) cosβˆ’1 (cos ( 4 ))
(C) sinβˆ’1 (sin ( 8 ))
3. Find the exact value of the following expression.
3
12
(A) cot (sinβˆ’1 (βˆ’ 5))
1
(C) sec (tanβˆ’1 (2))
(B) tan (cos βˆ’1 (βˆ’ 13))
3
5
4. Find the exact value of the following expression: sin [sinβˆ’1 (5) βˆ’ cos βˆ’1 (βˆ’ 13)]
3
5. Given cos π‘Ž = βˆ’ 5 ,
πœ‹
2
5
≀ π‘Ž ≀ πœ‹ and sin 𝑏 = βˆ’ 13 ,
24
3πœ‹
2
≀ 𝑏 ≀ 2πœ‹, find sin(π‘Ž + 𝑏).
5
6. Given cos π‘Ž = βˆ’ 25 with π‘Ž in quadrant II and sin 𝑏 = βˆ’ 13 with 𝑏 in qudrant IV, find cos(π‘Ž + 𝑏)
5πœ‹
2πœ‹
5πœ‹
2πœ‹
7. Find the exact value of sin ( 18 ) cos ( 18 ) βˆ’ cos ( 18 ) sin ( 18 ).
8. Write sin(3π‘₯) βˆ™ cos(4π‘₯) + cos(3π‘₯) βˆ™ sin(4π‘₯) in terms of a single trigonometric function.
9. Write sin(2π‘₯) cos(3π‘₯) βˆ’ cos(2π‘₯) sin(3π‘₯) in terms of a single trigonometric function.
10. Using a Sum or Difference Identity, find the exact value cos(105°)
4
5
πœ‹
2
11. Find the exact value of cos(2πœƒ) given sin πœƒ = and 0 < πœƒ < .
πœ‹
12. Using a half-angle Identity, find the exact value sin (βˆ’ 12)
13. Use a half-angle identity to evaluate tan(22.5°).
14. Find the exact value of
5πœ‹
πœ‹
3πœ‹
(A) cos ( 12 ) cos (12)
15. Simplify:
(sin πœƒ+cos πœƒ)2 βˆ’1
sin πœƒ cos πœƒ
16. Establish the identity:
πœ‹
(B) sin ( 8 ) cos ( 8 )
1βˆ’sin πœƒ
cos πœƒ
cos πœƒ
+ 1βˆ’sin πœƒ = 2 sec πœƒ.
74
2017 MATH 1112: DR.YOU
SOLUTIONS:
√3
)
2
with
√2
)
2
with βˆ’ 2 < π‘₯ < 0. Since sin πœƒ = βˆ’
1. (A) Let πœƒ = cosβˆ’1 (βˆ’
πœ‹
2
< π‘₯ < πœ‹. Since cos πœƒ = βˆ’
√3
2
and πœƒ is in the second quadrant, πœƒ =
5πœ‹
6
by using
the unit circle.
(B) Let πœƒ = sinβˆ’1 (βˆ’
πœ‹
√2
2
and πœƒ is negative in the fourth quadrant, πœƒ =
πœ‹
βˆ’ 4 by using the unit circle.
πœ‹
(C) Let πœƒ = tanβˆ’1(√3) with 0 < π‘₯ < 2 . Since tan πœƒ = √3 and πœƒ is in the first quadrant, πœƒ =
πœ‹
3
by using the unit
circle.
2. (A) Since
angle
πœ‹
.
3
14πœ‹
3
πœ‹
2
πœ‹
2
is not in the interval βˆ’ < π‘₯ < , we may not simply cancel the sine and sine inverse function. The
14πœ‹ 2πœ‹
~
3
3
lies in quadrant II. Reflect this angle over the 𝑦-axis into quadrant I and its corresponding angle is
Then
14πœ‹
2πœ‹
πœ‹
sinβˆ’1 (sin (
)) = sinβˆ’1 (sin ( )) =
3
3
3
(B) Since
9πœ‹
4
The angle
9πœ‹ πœ‹
~
4
4
(C) Since
9πœ‹
8
angle
9πœ‹
8
πœ‹
πœ‹
is not in the interval βˆ’ 2 < π‘₯ < 2 , we may not simply cancel the cosine and cosine inverse function.
9πœ‹
4
πœ‹
4
lies in quadrant I. Then cosβˆ’1 (cos ( )) = cosβˆ’1 (cos ( )) =
πœ‹
2
πœ‹
4
πœ‹
2
is not in the interval βˆ’ < π‘₯ < , we may not simply cancel the sine and sine inverse function. The
lies in quadrant III. Reflect this angle over the 𝑦-axis into quadrant IV and its corresponding angle is
πœ‹
8
negative βˆ’ . Then
9πœ‹
πœ‹
sinβˆ’1 (sin ( )) = βˆ’
8
8
3
5
πœ‹
2
3. (A) Let πœƒ = sinβˆ’1 (βˆ’ ) with βˆ’ < π‘₯ <
πœ‹
2
: πœƒ lies in quadrant IV β‡’ 𝑦 = βˆ’3, π‘₯ = 4 and π‘Ÿ = 5
3
π‘₯
4
4
cot (sinβˆ’1 (βˆ’ )) = =
=βˆ’
5
𝑦 βˆ’3
3
12
(B) Let πœƒ = cosβˆ’1 (βˆ’ 13) with 0 < π‘₯ < πœ‹ : πœƒ lies in quadrant II β‡’ 𝑦 = 5, π‘₯ = βˆ’12 and π‘Ÿ = 13
tan (cosβˆ’1 (βˆ’
1
2
πœ‹
2
(C) Let πœƒ = tanβˆ’1 ( ) with βˆ’ < π‘₯ <
πœ‹
2
12
𝑦
5
)) = = βˆ’
13
π‘₯
12
: πœƒ lies in quadrant I β‡’ 𝑦 = 1, π‘₯ = 2 and π‘Ÿ = √12 + 22 = √5
1
π‘Ÿ √5
sec (tanβˆ’1 ( )) = =
2
π‘₯
2
75
2017 MATH 1112: DR.YOU
3
5
4. Let π‘Ž = sinβˆ’1 (5) and 𝑏 = cosβˆ’1 (βˆ’ 13)
quadrant
π‘₯
𝑦
π‘Ÿ
π‘Ž: I quadrant
4
3
5
𝑏: II quadrant
βˆ’5
12
13
3
5
3
5
4 12
33
sin [sinβˆ’1 ( ) βˆ’ cosβˆ’1 (βˆ’ )] = sin(π‘Ž + 𝑏) = sin π‘Ž cos 𝑏 + cos π‘Ž sin 𝑏 = ( ) (βˆ’ ) + ( ) ( ) =
5
13
5
13
5 13
65
5. First, find the corresponding terminal points for each angle;
quadrant
π‘₯
𝑦
π‘Ÿ
π‘Ž: II quadrant
βˆ’3
4
5
𝑏: IV quadrant
12
βˆ’5
13
4 12
3
5
33
sin(π‘Ž + 𝑏) = sin π‘Ž cos 𝑏 + cos π‘Ž sin 𝑏 = ( ) ( ) + (βˆ’ ) (βˆ’ ) =
5 13
5
13
65
6. First, find the corresponding terminal points for each angle;
quadrant
π‘₯
𝑦
π‘Ÿ
π‘Ž: II quadrant
βˆ’24
7
25
𝑏: IV quadrant
βˆ’5
12
13
cos(π‘Ž + 𝑏) = cos π‘Ž cos 𝑏 βˆ’ sin π‘Ž sin 𝑏 = (βˆ’
5πœ‹
18
2πœ‹
18
5πœ‹
18
2πœ‹
18
5πœ‹
18
7. sin ( ) cos ( ) βˆ’ cos ( ) sin ( ) = sin (
βˆ’
2πœ‹
)
18
24
5
7 12
36
) (βˆ’ ) βˆ’ ( ) ( ) =
25
13
25 13
325
πœ‹
6
= sin ( ) =
1
2
8. sin(3π‘₯) βˆ™ cos(4π‘₯) + cos(3π‘₯) βˆ™ sin(4π‘₯) = sin(3π‘₯ + 4π‘₯) = sin(7π‘₯)
9. sin(2π‘₯) cos(3π‘₯) βˆ’ cos(2π‘₯) sin(3π‘₯) = sin(2π‘₯ βˆ’ 3π‘₯) = sin(βˆ’π‘₯) = βˆ’ sin(π‘₯)
1
√2
√3
√2
10. cos(60° + 45°) = cos(60°) cos(45°) βˆ’ sin(60°) sin(45°) = (2) ( 2 ) βˆ’ ( 2 ) ( 2 ) =
4 2
32
7
11. cos(2πœƒ) = 1 βˆ’ 2 sin2 πœƒ = 1 βˆ’ 2 (5) = 1 βˆ’ 25 = βˆ’ 25
βˆ’πœ‹β„6
)
2
πœ‹
πœ‹
12. sin (βˆ’ 12) = sin (
(it is negative since βˆ’ 6 lies in quadrant IV)
πœ‹
6
1βˆ’cos(βˆ’ )
= βˆ’βˆš
2
45°
)
2
13. tan(22.5°) = tan (
=
1βˆ’
= βˆ’βˆš
√3
2
2
1βˆ’cos(45°)
sin(45°)
= βˆ’βˆš
=
√2
2
√2
2
1βˆ’
2βˆ’βˆš3
4
=
=βˆ’
2βˆ’βˆš2
√2
√2βˆ’βˆš3
2
= √2 βˆ’ 1
√2βˆ’βˆš6
4
76
2017 MATH 1112: DR.YOU
5πœ‹
1
πœ‹
4πœ‹
6πœ‹
1 1
1
14. (A) cos ( 12 ) cos (12) = 2 {cos (12) + cos (12)} = 2 {2 + 0} = 4
3πœ‹
1
πœ‹
4πœ‹
2πœ‹
1
(B) sin ( 8 ) cos (8 ) = 2 {sin ( 8 ) + sin ( 8 )} = 2 {1 +
15.
√2
2
}=
2+√2
4
(sin πœƒ+cos πœƒ)2 βˆ’1
sin πœƒ cos πœƒ
=
=
sin2 πœƒ+2 sin πœƒ cos πœƒ+cos2 πœƒβˆ’1
sin πœƒ cos πœƒ
2 sin πœƒ cos πœƒ
sin πœƒ cos πœƒ
by FOIL
since sin2 πœƒ + cos2 πœƒ = 1
=2
16.
1βˆ’sin πœƒ
cos πœƒ
+
cos πœƒ
1βˆ’sin πœƒ
=
(1βˆ’sin πœƒ)2
cos πœƒ(1βˆ’sin πœƒ)
=
1βˆ’2sin πœƒ+sin2 πœƒ
cos πœƒ(1βˆ’sin πœƒ)
=
1βˆ’2 sin πœƒ+sin2 πœƒ+cos2 πœƒ
cos πœƒ(1βˆ’sin πœƒ)
2βˆ’2 sin πœƒ
= cos πœƒ(1βˆ’sin πœƒ)
2(1βˆ’sin πœƒ)
+
(cos πœƒ)2
cos πœƒ(1βˆ’sin πœƒ)
cos2 πœƒ
+ cos πœƒ(1βˆ’sin πœƒ)
: find the least common denominator
: FOIL
: Make it one fraction and simplify
: since sin2 πœƒ + cos2 πœƒ = 1
= cos πœƒ(1βˆ’sin πœƒ) : Factor the numerator and simplify
2
= cos πœƒ
= 2 sec πœƒ
77
Related documents