Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2017 MATH 1112: DR.YOU CHAPTER 2. ANALYTIC TRIGONOMETRY LECTURE 1-1 INVERSE TRIGONOMETRIC FUNCTIONS INVERSE The function Inverse function Domain of inverse Range of inverse π¦ = sin π₯ π¦ = sinβ1 π₯ or π¦ = arcsin π₯ [β1,1] π π [β , ] 2 2 π¦ = cos π₯ π¦ = cos β1 π₯ or π¦ = arccos π₯ [β1,1] [0, π] π¦ = tan π₯ π¦ = tanβ1 π₯ or π¦ = arctan π₯ (ββ, β) π¦ = csc π₯ π¦ = csc β1 π₯ or π¦ = arccsc π₯ (ββ, β1] βͺ [1, β) π¦ = sec π₯ π¦ = sec β1 π₯ or π¦ = arcsec π₯ (ββ, β1] βͺ [1, β) π¦ = cot π₯ π¦ = cot β1 π₯ or π¦ = arccot π₯ (ββ, β) NOTE: 1 csc β1 π₯ = sinβ1 ( ), π₯ 1 sec β1 π₯ = cosβ1 ( ), π₯ (0, π) 1 cot β1 π₯ = tanβ1 ( ) π₯ Example 1 Your Turn 1 Find the exact value of Find the exact value of 1 (A) sinβ1 (2) (B) sinβ1 (β β3 ) 2 1 (A) Since 2 > 0, the value of angle π in the unit circle 1 is in I quadrant such that sin π = 2 1 2 sinβ1 ( ) = (B) Since β β3 2 π 6 < 0, the value of angle π in unit circle is in IV quadrant and negative such that sin π = β β3 2 sinβ1 (β π β3 )=β 2 3 π π (β , ) 2 2 π π π¦β 0 [β , ] , 2 2 π [0, π], π¦β 2 (A) sinβ1 (β β2 ) 2 (B) sinβ1 (1) 48 2017 MATH 1112: DR.YOU Example 2 Your Turn 2 Find the exact value of Find the exact value of β2 (B) cosβ1 (β (A) cosβ1 ( 2 ) (A) Since β2 2 1 (A) cosβ1 (β 2) cosβ1 ( β3 2 β2 . 2 π β2 )= 2 4 < 0, the value of angle π in unit circle is in II quadrant such that cos π = β cosβ1 (β β3 . 2 5π β3 )= 2 6 Example 3 Your Turn 3 Find the exact value of Find the exact value of (A) tanβ1(1) (B) tanβ1(ββ3) (A) Since 1 > 0, the value of angle π in the unit circle is in I quadrant such that tan π = 1. π tanβ1 (1) = 4 (B) Since ββ3 < 0, the value of angle π in unit circle is in IV quadrant and negative such that sin π = β β2 (B) cosβ1 ( 2 ) > 0, the value of angle π in unit circle is in II quadrant such that cos π = (B) Since β β3 ) 2 β3 2 tanβ1 (ββ3) = β π 3 (A) tanβ1(β1) 1 (B) tanβ1 ( 3) β 49 2017 MATH 1112: DR.YOU Example 4 Your Turn 4 Use a calculator to find exact value of the following in Use a calculator to find exact value of the following in degree. Round four decimal place. radian. Round four decimal place. 4 12 (A) sinβ1 (9) (B) cosβ1 (β 13) (C) sinβ1 (1.2) (D) tanβ1(4) (A) sinβ1 (9) (B) cosβ1 (β0.6) (C) cosβ1 (2) (D) tanβ1(6) 5 4 (A) sinβ1 (9) β 26.3978° 12 (B) cosβ1 (β 13) β 157.3801° (C) sinβ1 (1.2) is undefined: error since there are no angles π such that sin π = 1.2. (D) tanβ1(4) = 75.9638° Example 5 Your Turn 5 Use a calculator to find exact value of the following in Use a calculator to find exact value of the following in degree. Round four decimal place. radian. Round four decimal place. 3 (A) cscβ1 (2) 5 (B) secβ1 (β 3) 3 (A) We find angle π such that csc π = 2 2 2 β π = sinβ1 ( ) 3 3 3 2 cscβ1 ( ) = sinβ1 ( ) = 41.8103° 2 3 sin π = 5 (B) We find angle π such that sec π = β 3 3 3 β π = cosβ1 (β ) 5 5 5 3 secβ1 (β ) = cosβ1 (β ) = 126.8699° 3 5 cos π = β (A) cscβ1 (1.2) (B) cotβ1 (3) 50 2017 MATH 1112: DR.YOU THE RELATION BETWEEN INVERSE FUNCTIONS Functions relation sinβ1(sin π) = π , β Sine function Cosine function π π β€πβ€ 2 2 sin(sinβ1 π΄) = π΄, β1 β€ π΄ β€ 1 cosβ1(cos π) = π , 0β€πβ€π cos(cosβ1 π΄) = π΄, β1 β€ π΄ β€ 1 tanβ1 (tan π) = π, β tan(tanβ1 π΄) = π΄, ββ < π΄ < β Tangent function π π <π< 2 2 Example 6 Your Turn 6 Find the exact value of Find the exact value of π 2π (A) sinβ1 (sin ( 3 )) (C) sinβ1 (sin (β (B) sinβ1 (sin ( 3 )) 2π )) 3 π π (A) We find an angle π such that β 2 β€ π β€ 2 . π π β3 sinβ1 (sin ( )) = sinβ1 ( ) = 3 2 3 π π (B) We find an angle π such that β 2 β€ π β€ 2 . 2π β3 β3 sinβ1 (sin ( )) = sinβ1 ( ) = 3 2 2 2π π sinβ1 (sin ( )) = 3 3 π π (C) We find an angle π such that β 2 β€ π β€ 2 . sinβ1 (sin (β 2π π β3 )) = sinβ1 (β ) = β 3 2 3 (Warning: not 5π 3 π π since β 2 β€ π β€ 2 ) 4π (A) sinβ1 (sin ( 3 )) π (B) sinβ1 (sin (β 6 )) 51 2017 MATH 1112: DR.YOU Example 7 Your Turn 7 Find the exact value of Find the exact value of 5π (A) tanβ1 (tan ( 4 )) π (B) tanβ1 (tan (β 3 )) π 2π (A) tanβ1 (tan ( 3 )) (B) tanβ1 (tan (β 11π )) 6 π (A) We find an angle π such that β 2 β€ π β€ 2 . 5π π tanβ1 (tan ( )) = tanβ1 (1) = β 4 4 π π (B) We find an angle π such that β 2 β€ π β€ 2 . π π tanβ1 (tan (β )) = tanβ1(ββ3) = β 3 3 Example 8 Your Turn 8 Find the exact value of Find the exact value of π (A) cosβ1 (cos (β 4 )) 3π (B) cosβ1 (cos ( 4 )) (A) We find an angle π such that 0 β€ π β€ π. π 4 cosβ1 (cos (β )) = cosβ1 (β 3π β2 )= 2 4 (B) We find an angle π such that 0 β€ π β€ π. cosβ1 (cos ( 3π 3π β2 )) = cosβ1 (β ) = 4 2 4 5π (A) cosβ1 (cos ( 4 )) 5π (B) cosβ1 (cos ( 6 )) 52 2017 MATH 1112: DR.YOU Example 9 Your Turn 9 Find the exact value of Find the exact value of cosβ1 (sin ( 5π )) 4 (A) sinβ1 (cos (β 7π )) 6 We find an angle π such that 0 β€ π β€ π. 5π 3π β2 cosβ1 (sin ( )) = cos β1 (β ) = 4 2 4 π (B) cosβ1 (tan (β 4 )) 7π (C) cosβ1 (sin ( 6 )) 53 2017 MATH 1112: DR.YOU Example 10 Your Turn 10 Find the exact value of Find the exact value of 5 5 (A) cos (tanβ1 (12)) (B) tan (cos β1 (β 13)) 5 π (A) Let π = tanβ1 (12). Then β 2 β€ π β€ 5 (A) cos (tanβ1 (12)) 3 (B) tan (cos β1 (β 5)) π 2 We find a point in the terminal side of π π₯ = 12, π¦ = 5 in I quadrant π₯ π¦ π 12 5 13 5 12 cos (tanβ1 ( )) = cos π = 12 13 (C) cot (cos β1 (β (B) Let π = cosβ1 (β 5 ). 13 Then 0 β€ π β€ π We find a point in the terminal side of π π₯ = β5, π = 13 in II quadrant π₯ π¦ π β5 12 13 tan (cosβ1 (β 5 12 )) = tan π = β 13 5 7 )) 25 3 4 (D) sin (tanβ1 (β )) 54 2017 MATH 1112: DR.YOU LECTURE 2-2 TRIGONOMETRY IDENTITIES AND SUM/DIFFERENCE FORMULA FUNDAMENTAL IDENTITIES tan π = sin π cos π cot π = sin2 π₯ + cos2 π₯ = 1 1 cos π = tan π sin π csc π = 1 sin π tan2 π₯ + 1 = sec 2 π₯ sec π = cot 2 π₯ + 1 = csc 2 π₯ EVEN/ODD FUNCTIONS Odd: Symmetry with respect to origin Even: Symmetry with respect to π -axis sin(βπ) = β sin(π) csc(βπ) = β csc(π) tan(βπ) = β tan(π) cot(βπ) = β cot(π) cos(βπ) = cos(π) sec(βπ) = sec(βπ) Example 1 Your Turn 1 Find the exact value of the expression. Find the exact value of the expression. (A) sin2(50°) + cos2(50°) (A) cos2 (179°) + sin2(179°) (B) tan2 (49°) β sec 2(49°) (A) sin2(50°) + cos2(50°) = 1 (B) tan2 (49°) β sec 2(49°) = sec 2 (49°) β 1 β sec 2 (49°) 1 cos π (B) sec 2(130°) β tan2 (130°) = β1 (C) csc 2(68°) β cot 2(68°) 55 2017 MATH 1112: DR.YOU Example 2 Your Turn 2 Find the exact value of the expression. Find the exact value of the expression. (A) sin(β30°) (B) cos(β30°) (A) sin(β45°) (B) cos(β120°) (C) tan(β30°) (D) sec(β60°) 1 (A) sin(β30°) = β sin(30°) = β 2 (B) cos(β30°) = cos(30°) = β3 2 Sum and sin(π + π) = sin π cos π + cos π sin π difference sin(π β π) = sin π cos π β cos π sin π Formulas cos(π + π) = cos π cos π β sin π sin π cos(π β π) = cos π cos π + sin π sin π tan(π + π) = tan π + tan π 1 β tan π tan π tan(π β π) = tan π β tan π 1 + tan π tan π Example 3 Your Turn 3 Find the exact value of each expression. Find the exact value of each expression. (A) sin(20°) cos(10°) + cos(20°) sin(10°) (A) sin(40°) cos(50°) + cos(40°) sin(50°) (B) sin(20°) cos(80°) β cos(20°) sin(80°) sin(20°) cos(10°) + cos(20°) sin(10°) = sin(20° + 10°) = sin(30°) 1 (B) sin(79°) cos(31°) β cos(79°) sin(31°) =2 sin(20°) cos(80°) β cos(20°) sin(80°) = sin(20° β 80°) = sin(β60°) =β β3 2 56 2017 MATH 1112: DR.YOU Example 4 Your Turn 4 Find the exact value of each expression. Find the exact value of each expression. (A) cos(70°) cos(20°) + sin(20°) sin(20°) (B) cos(50°) cos(10°) β sin(50°) sin(10°) 3π π 3π π π π π π (A) cos ( 8 ) cos ( 8 ) + sin ( 8 ) sin ( 8 ) cos(70°) cos(25°) + sin(70°) sin(25°) = cos(70° β 25°) = cos(45°) = β2 2 (B) cos (12) cos ( 4 ) β sin (12) sin ( 4 ) cos(50°) cos(10°) β sin(50°) sin(10°) = cos(50° + 10°) = cos(60°) = 1 2 Example 5 Your Turn 5 Find the exact value of each expression. Find the exact value of each expression. tan(20°) + tan(25°) 1 β tan(20°) tan(25°) (A) tan(40°)βtan(10°) 1+tan(40°) tan(10°) (B) 5π π )+tan( ) 12 4 5π π 1βtan( ) tan( ) 12 4 tan(20°) + tan(25°) 1 β tan(20°) tan(25°) = tan(20° + 25°) = tan(45°) =1 tan( 57 2017 MATH 1112: DR.YOU Example 6 Your Turn 6 Find the exact value of Find the exact value of sin(30° + 45°) sin(60° β 45°) sin(30° + 45°) = sin(30°) cos(45°) + cos(30°) sin(45°) = 1 β2 β3 β2 β + β 2 2 2 2 = β2 + β6 4 Example 7 Your Turn 7 Find the exact value of Find the exact value of cos(135° + 60°) cos(45° β 30°) cos(135° + 60°) = cos(135°) cos(60°) β sin(135°) sin(60°) = (β = β2 1 β2 β3 β )β β 2 2 2 2 ββ2 + β6 4 Example 8 Your Turn 8 Find the exact value of Find the exact value of tan(30° β 45°) tan(30° β 45°) = = = tan(30°) β tan(45°) 1 + tan(30°) tan(45°) β3 β1 3 β3 1+ β1 3 β3β3 β3 = 3+ β12β6β3 6 = (β3β3)(3ββ3) (3+β3)(3ββ3) = β2 β β3 tan(45° β 60°) 58 2017 MATH 1112: DR.YOU Example 9 Your Turn 9 Find the exact value of Find the exact value of sin(105°) sin(75°) sin(105°) = sin(60° + 45°) = sin(60°) cos(45°) + cos(60°) sin(45°) = β3 β2 1 β2 β + β 2 2 2 2 = β6 + β2 4 Example 10 Your Turn 10 Find the exact value of Find the exact value of cos(285°) cos(285°) = cos(240° + 45°) = cos(240°) cos(45°) β sin(240°) sin(45°) 1 β2 β3 β2 = (β ) β β (β ) β 2 2 2 2 = ββ2 + β6 4 cos ( 7π ) 12 59 2017 MATH 1112: DR.YOU Example 11 Your Turn 11 Find the exact value of Find the exact value of tan(165°) tan(15°) tan(15°) = tan(45° β 30°) = tan(45°) β tan(30°) 1 + tan(45°) tan(30°) = β3 3 β3 1+ β1 3 = 3ββ3 3+β3 = (3ββ3)(3ββ3) = 12+6β3 6 1β (3+β3)(3ββ3) = 2 + β3 Your Turn Your Turn Find the exact value of Find the exact value of 17π sin ( ) 12 cos (β 5π ) 12 60 2017 MATH 1112: DR.YOU Example 12 Your Turn 12 Simplify the expression by using sum and difference Simplify the expression by using sum and difference formula. formula. sin(7π₯) cos(3π₯) + cos(7π₯) sin(3π₯) (A) cos(2π₯) cos(5π₯) + sin(2π₯) sin(5π₯) sin(7π₯) cos(3π₯) + cos(7π₯) sin(3π₯) (B) sin(5π₯) cos(2π₯) β cos(5π₯) sin(2π₯) = sin(7π₯ + 3π₯) = sin(10π₯) Example 13 Your Turn 13 Find the exact value of sin(πΌ + π½) when Find the exact value of sin(πΌ β π½) when 3 sin πΌ = 5 , 0 < πΌ < π 2 12 π and cos π½ = 13 , β 2 < π½ < 0 We find points on terminal side which is corresponding to angles πΌ and π½. π₯ π¦ π πΌ:I +4 +3 5 π½ : IV +12 β5 13 quadrant sin(πΌ + π½) = sin πΌ cos π½ + cos πΌ sin π½ 3 12 4 5 = ( ) ( ) + ( ) (β ) 5 13 5 13 = 16 65 4 cos πΌ = 5 , 0 < πΌ < π 2 3 π and sin π½ = β 5 , β 2 < π½ < 0. 61 2017 MATH 1112: DR.YOU Your Turn Your Turn Find the exact value of cos(πΌ + π½) when Find the exact value of cos(πΌ β π½) when 4 tan πΌ = β 3 , π 2 1 π < πΌ < π and cos π½ = 2 , 0 < π½ < 2 . Example 14 5 π Your Turn 14 π 2 Verify the identity sin ( + π₯) = cos π₯ 3 sin πΌ = β 13 , β 2 < πΌ < 0 and cos π½ = 5 , 0 < π½ < Verify the identity: cos(π β π₯) = β cos π₯ π 2 62 2017 MATH 1112: DR.YOU Example 15 Your Turn 15 Find the exact value of Find the exact value of 1 3 sin [cosβ1 ( ) + sinβ1 (β )] 2 5 1 4 5 cos [tanβ1 ( ) + cos β1 ( )] 3 13 3 Let πΌ = cos β1 (2) and π½ = sinβ1 (β 5). We find points on terminal side which is corresponding to angles πΌ and π½. π₯ π¦ π πΌ:I +1 +β3 2 π½ : IV +4 β3 5 quadrant 1 3 sin [cosβ1 ( ) + sinβ1 (β )] 2 5 = sin(πΌ + π½) = sin πΌ cos π½ + cos πΌ sin π½ =( = 1 3 β3 4 ) ( ) + ( ) (β ) 2 5 2 5 4β3 β 3 10 63 2017 MATH 1112: DR.YOU Your Turn Your Turn Find the exact value of Find the exact value of 4 5 cos [tanβ1 ( ) + cosβ1 ( )] 3 13 3 4 sin [sinβ1 ( ) + cosβ1 (β )] 5 5 64 2017 MATH 1112: DR.YOU LECTURE 2-3 HALF/DOUBLE FORMULA sin(2π) = 2 sin π cos π Double angle Formulas tan(2π) = cos(2π) = cos 2 π β sin2 π Half angle cos(2π) = 2 cos2 π β 1 π 1 β cos π sin ( ) = ±β 2 2 Formulas 2 tan π 1 β tan2 π cos(2π) = 1 β 2 sin2 π π 1 β cos π tan ( ) = 2 sin π π 1 + cos π cos ( ) = ±β 2 2 π (the sign is determined by the quadrant of 2 ) Example 1 Your Turn 1 Find the exact value of cos(2π) if Find the exact value of cos(2π) if sin(π) = 5 13 3 (A) cos(π) = β 5 cos(2π) = 1 β 2 sin2 π 3 5 2 = 1 β 2( ) 13 = (B) sin(π) = 7 119 169 Example 2 Your Turn 2 Find the exact value of sin(2π) if Find the exact value of sin(2π₯) if 3 sin(π) = , 5 π <π<π 2 cos(π) = We find a point on terminal side which is corresponding to angle π. quadrant π : II π₯ π¦ π β4 +3 5 3 4 24 sin(2π) = 2 sin(π) cos(π) = 2 ( ) (β ) = β 5 5 25 12 , 13 0<π< π 2 65 2017 MATH 1112: DR.YOU Example 3 Your Turn 3 Find the exact value of 2 sin(15°) cos(15°) Find the exact value of 2 sin(22.5°) cos(22.5°) 2 sin(15°) cos(15°) = sin(2 β 15°) = sin(30°) 1 =2 Example 4 Your Turn 4 Find the exact value of cos2 (75°) β sin2(75°) Find the exact value of (A) cos2 (105°) β sin2(105°) cos2 (75°) β sin2(75°) = cos(2 β 75°) (B) 2 cos2 (15°) β 1 = cos(150°) = β3 2 (C) 1 β 2 sin2(22.5°) Example 5 Your Turn 5 Find the exact value of sin(β22.5°) by half-angle Find the exact value of cos(15°) by half-angle formula. formula. Since β22.5° is in IV quadrant, the value of sine is negative; β45° sin(β22.5°) = sin ( ) 2 = 1 β cos(β45°) 1 β β2β2 β = ββ 2 2 π§ππ πππ’π―π β β β2 β β2 2 β β2 = ββ =β 4 2 66 2017 MATH 1112: DR.YOU Your Turn Your Turn Find the exact value of sin(75°) by half-angle formula. Find the exact value of cos(112.5°) by half-angle formula. Example 6 Your Turn 6 π 8 Find the exact value of sin ( ) by half-angle formula. π 12 Find the exact value of cos ( ) by half-angle formula. 67 2017 MATH 1112: DR.YOU Example 7 Your Turn 7 Find the exact value of tan(15°) by half-angle formula. Find the exact value of tan(22.5°) by half-angle formula. 30° tan(15°) = tan ( ) 2 1 β cos(30°) = sin(30°) β3 1β 2 = 1 2 = 2 β β3 Sum to product Formulas Product to Sum Formulas π+π πβπ ) cos ( ) 2 2 πβπ π+π sin π β sin π = 2 sin ( ) cos ( ) 2 2 1 sin π sin π = {cos(π β π) β cos(π + π)} 2 1 sin π cos π = {sin(π + π) + sin(π β π)} 2 sin π + sin π = 2 sin ( π+π πβπ cos π + cos π = 2 cos ( ) cos ( ) 2 2 π+π πβπ cos π β cos π = β2 sin ( ) sin ( ) 2 2 1 cos π cos π = {cos(π β π) + cos(π + π)} 2 Example 8 Your Turn 8 Find the exact value of sin(75°) + sin(15°) Find the exact value of cos(225°) β cos(195°) sin(75°) + sin(15°) = 2 sin ( 75° + 15° 75° β 15° ) cos ( ) 2 2 = 2 sin(45°) cos(30°) = 2( = β2 2 β2 1 )( ) 2 2 68 2017 MATH 1112: DR.YOU Example 9 Your Turn 9 Find the exact value of sin(195°) β cos(75°) Find the exact value of cos(285°) β cos(195°) sin(195°) β cos(75°) 1 = {sin(195° + 75°) + sin(195° β 75°)} 2 1 = {sin(270°) + sin(120°)} 2 1 = 2 {β1 + = β3 } 2 β2+β3 4 Example 10 Your Turn 10 Simplify the expression by using sum to product formula Simplify the expression by using sum to product formula cos(5π₯) β cos(π₯) sin(2π₯) β sin(4π₯) sin(2π₯) β sin(4π₯) = 2 sin ( 2π₯ β 4π₯ 2π₯ + 4π₯ ) cos ( ) 2 2 = 2 sin(βπ₯) cos(3π₯) = 2 sin(π₯) cos(3π₯) Your Turn Your Turn Simplify the expression by using sum to product formula Simplify the expression by using sum to product formula sin(π₯) + sin(3π₯) cos(π₯) + cos(5π₯) 69 2017 MATH 1112: DR.YOU Example 11 Your Turn 11 Simplify the expression by using product to sum formula Simplify the expression by using product to sum formula cos(10π₯) β sin(6π₯) sin(6π₯) β cos(2π₯) cos(10π₯) β sin(6π₯) = sin(6π₯) β cos(10π₯) 1 = {sin(6π₯ + 10π₯) + sin(6π₯ β 10π₯)} 2 1 = {sin(16π₯) + sin(β4π₯)} 2 1 = {sin(16π₯) β sin(4π₯)} 2 Your Turn Your Turn Simplify the expression by using product to sum formula Simplify the expression by using product to sum formula cos(3π₯) β cos(5π₯) sin(4π₯) β sin(2π₯) 70 2017 MATH 1112: DR.YOU LECTURE 2-4 IDENTITIES Fundamental Identities Half angle Formulas tan π = sin π cos π cot π = cos π sin π cot π = 1 tan π csc π = sin2 π + cos 2 π = 1 tan2 π + 1 = sec 2 π π 1 β cos π sin ( ) = ±β 2 2 π 1 + cos π cos ( ) = ±β 2 2 1 sin π sec π = 1 cos π cot 2 π + 1 = csc 2 π π 1 β cos π tan ( ) = 2 sin π π Formulas ( the sign is determined by the quadrant of 2 ) 2 tan π sin(2π) = 2 sin π cos π tan(2π) = 1 β tan2 π Sum and sin(π + π) = sin π cos π + cos π sin π difference sin(π β π) = sin π cos π β cos π sin π Formulas cos(π + π) = cos π cos π β sin π sin π Double angle cos(2π) = cos 2 π β sin2 π cos(2π) = 2 cos2 π β 1 cos(π β π) = cos π cos π + sin π sin π Sum to product Formulas Product to Sum Formulas π+π πβπ ) cos ( ) 2 2 πβπ π+π sin π β sin π = 2 sin ( ) cos ( ) 2 2 1 sin π sin π = {cos(π β π) β cos(π + π)} 2 1 sin π cos π = {sin(π + π) + sin(π β π)} 2 sin π + sin π = 2 sin ( cos(2π) = 1 β 2 sin2 π tan(π + π) = tan π + tan π 1 β tan π tan π tan(π β π) = tan π β tan π 1 + tan π tan π π+π πβπ cos π + cos π = 2 cos ( ) cos ( ) 2 2 π+π πβπ cos π β cos π = β2 sin ( ) sin ( ) 2 2 1 cos π cos π = {cos(π β π) + cos(π + π)} 2 Example 1 Your Turn 1 Establish the identity Establish the identity cos π (tan π + cot π) = csc π csc π β cos π = cot π 71 2017 MATH 1112: DR.YOU Example 2 Your Turn 2 Establish the identity Establish the identity cos2 π (1 + tan2 π) = 1 (sec π β 1)(sec π + 1) = tan2 π Example 3 Your Turn 3 Establish the identity Establish the identity 9 sec2 π β 5 tan2 π = 5 + 4 sec2 π 3 sin2 π + 4 cos2 π = 3 + cos2 π 72 2017 MATH 1112: DR.YOU Example 4 Your Turn 4 Establish the identity Establish the identity 1 β sin π = (sec π + tan π)2 1 + sin π 1β Example 5 Your Turn 5 Establish the identity Establish the identity 1 β sin π cos π = cos π 1 β sin π sin2 π 1 + cos π = cos π cos π = sec π β tan π 1 + sin π 73 2017 MATH 1112: DR.YOU REVIEW PROBLEMS FOR EXAM 2 1. Find the exact value of the following expression in radian. (A) cosβ1 (β β3 ) 2 (B) sinβ1 (β (C) tanβ1 (β3) β2 ) 2 2. Find the exact value of the expression in radian without using a calculator. 14π )) 3 9π (A) sinβ1 (sin ( 9π (B) cosβ1 (cos ( 4 )) (C) sinβ1 (sin ( 8 )) 3. Find the exact value of the following expression. 3 12 (A) cot (sinβ1 (β 5)) 1 (C) sec (tanβ1 (2)) (B) tan (cos β1 (β 13)) 3 5 4. Find the exact value of the following expression: sin [sinβ1 (5) β cos β1 (β 13)] 3 5. Given cos π = β 5 , π 2 5 β€ π β€ π and sin π = β 13 , 24 3π 2 β€ π β€ 2π, find sin(π + π). 5 6. Given cos π = β 25 with π in quadrant II and sin π = β 13 with π in qudrant IV, find cos(π + π) 5π 2π 5π 2π 7. Find the exact value of sin ( 18 ) cos ( 18 ) β cos ( 18 ) sin ( 18 ). 8. Write sin(3π₯) β cos(4π₯) + cos(3π₯) β sin(4π₯) in terms of a single trigonometric function. 9. Write sin(2π₯) cos(3π₯) β cos(2π₯) sin(3π₯) in terms of a single trigonometric function. 10. Using a Sum or Difference Identity, find the exact value cos(105°) 4 5 π 2 11. Find the exact value of cos(2π) given sin π = and 0 < π < . π 12. Using a half-angle Identity, find the exact value sin (β 12) 13. Use a half-angle identity to evaluate tan(22.5°). 14. Find the exact value of 5π π 3π (A) cos ( 12 ) cos (12) 15. Simplify: (sin π+cos π)2 β1 sin π cos π 16. Establish the identity: π (B) sin ( 8 ) cos ( 8 ) 1βsin π cos π cos π + 1βsin π = 2 sec π. 74 2017 MATH 1112: DR.YOU SOLUTIONS: β3 ) 2 with β2 ) 2 with β 2 < π₯ < 0. Since sin π = β 1. (A) Let π = cosβ1 (β π 2 < π₯ < π. Since cos π = β β3 2 and π is in the second quadrant, π = 5π 6 by using the unit circle. (B) Let π = sinβ1 (β π β2 2 and π is negative in the fourth quadrant, π = π β 4 by using the unit circle. π (C) Let π = tanβ1(β3) with 0 < π₯ < 2 . Since tan π = β3 and π is in the first quadrant, π = π 3 by using the unit circle. 2. (A) Since angle π . 3 14π 3 π 2 π 2 is not in the interval β < π₯ < , we may not simply cancel the sine and sine inverse function. The 14π 2π ~ 3 3 lies in quadrant II. Reflect this angle over the π¦-axis into quadrant I and its corresponding angle is Then 14π 2π π sinβ1 (sin ( )) = sinβ1 (sin ( )) = 3 3 3 (B) Since 9π 4 The angle 9π π ~ 4 4 (C) Since 9π 8 angle 9π 8 π π is not in the interval β 2 < π₯ < 2 , we may not simply cancel the cosine and cosine inverse function. 9π 4 π 4 lies in quadrant I. Then cosβ1 (cos ( )) = cosβ1 (cos ( )) = π 2 π 4 π 2 is not in the interval β < π₯ < , we may not simply cancel the sine and sine inverse function. The lies in quadrant III. Reflect this angle over the π¦-axis into quadrant IV and its corresponding angle is π 8 negative β . Then 9π π sinβ1 (sin ( )) = β 8 8 3 5 π 2 3. (A) Let π = sinβ1 (β ) with β < π₯ < π 2 : π lies in quadrant IV β π¦ = β3, π₯ = 4 and π = 5 3 π₯ 4 4 cot (sinβ1 (β )) = = =β 5 π¦ β3 3 12 (B) Let π = cosβ1 (β 13) with 0 < π₯ < π : π lies in quadrant II β π¦ = 5, π₯ = β12 and π = 13 tan (cosβ1 (β 1 2 π 2 (C) Let π = tanβ1 ( ) with β < π₯ < π 2 12 π¦ 5 )) = = β 13 π₯ 12 : π lies in quadrant I β π¦ = 1, π₯ = 2 and π = β12 + 22 = β5 1 π β5 sec (tanβ1 ( )) = = 2 π₯ 2 75 2017 MATH 1112: DR.YOU 3 5 4. Let π = sinβ1 (5) and π = cosβ1 (β 13) quadrant π₯ π¦ π π: I quadrant 4 3 5 π: II quadrant β5 12 13 3 5 3 5 4 12 33 sin [sinβ1 ( ) β cosβ1 (β )] = sin(π + π) = sin π cos π + cos π sin π = ( ) (β ) + ( ) ( ) = 5 13 5 13 5 13 65 5. First, find the corresponding terminal points for each angle; quadrant π₯ π¦ π π: II quadrant β3 4 5 π: IV quadrant 12 β5 13 4 12 3 5 33 sin(π + π) = sin π cos π + cos π sin π = ( ) ( ) + (β ) (β ) = 5 13 5 13 65 6. First, find the corresponding terminal points for each angle; quadrant π₯ π¦ π π: II quadrant β24 7 25 π: IV quadrant β5 12 13 cos(π + π) = cos π cos π β sin π sin π = (β 5π 18 2π 18 5π 18 2π 18 5π 18 7. sin ( ) cos ( ) β cos ( ) sin ( ) = sin ( β 2π ) 18 24 5 7 12 36 ) (β ) β ( ) ( ) = 25 13 25 13 325 π 6 = sin ( ) = 1 2 8. sin(3π₯) β cos(4π₯) + cos(3π₯) β sin(4π₯) = sin(3π₯ + 4π₯) = sin(7π₯) 9. sin(2π₯) cos(3π₯) β cos(2π₯) sin(3π₯) = sin(2π₯ β 3π₯) = sin(βπ₯) = β sin(π₯) 1 β2 β3 β2 10. cos(60° + 45°) = cos(60°) cos(45°) β sin(60°) sin(45°) = (2) ( 2 ) β ( 2 ) ( 2 ) = 4 2 32 7 11. cos(2π) = 1 β 2 sin2 π = 1 β 2 (5) = 1 β 25 = β 25 βπβ6 ) 2 π π 12. sin (β 12) = sin ( (it is negative since β 6 lies in quadrant IV) π 6 1βcos(β ) = ββ 2 45° ) 2 13. tan(22.5°) = tan ( = 1β = ββ β3 2 2 1βcos(45°) sin(45°) = ββ = β2 2 β2 2 1β 2ββ3 4 = =β 2ββ2 β2 β2ββ3 2 = β2 β 1 β2ββ6 4 76 2017 MATH 1112: DR.YOU 5π 1 π 4π 6π 1 1 1 14. (A) cos ( 12 ) cos (12) = 2 {cos (12) + cos (12)} = 2 {2 + 0} = 4 3π 1 π 4π 2π 1 (B) sin ( 8 ) cos (8 ) = 2 {sin ( 8 ) + sin ( 8 )} = 2 {1 + 15. β2 2 }= 2+β2 4 (sin π+cos π)2 β1 sin π cos π = = sin2 π+2 sin π cos π+cos2 πβ1 sin π cos π 2 sin π cos π sin π cos π by FOIL since sin2 π + cos2 π = 1 =2 16. 1βsin π cos π + cos π 1βsin π = (1βsin π)2 cos π(1βsin π) = 1β2sin π+sin2 π cos π(1βsin π) = 1β2 sin π+sin2 π+cos2 π cos π(1βsin π) 2β2 sin π = cos π(1βsin π) 2(1βsin π) + (cos π)2 cos π(1βsin π) cos2 π + cos π(1βsin π) : find the least common denominator : FOIL : Make it one fraction and simplify : since sin2 π + cos2 π = 1 = cos π(1βsin π) : Factor the numerator and simplify 2 = cos π = 2 sec π 77