Download Math 125 Sample Test 3 1. Simplify. Use positive exponents. (a) (a

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 125 Sample Test 3
1. Simplify. Use positive exponents.
1
(a) a 6
3
a4
1
(b)
a 3 b−4
1
a 2 b−3
√
−12
3
(c)
a−4 b3
2
(d) 8− 3
(e) a−9 b6
− 2
3
2. Simplify. Assume that each variable can represent any real number.
√
(a) 16x2 y 4
√
(b) x2 + 6x + 9
√
(c) 3 8y 3 z 6
√
(d) 4 16x4 y 16
3. Simplify. Assume variables represent nonnegative numbers.
√
3
(a) −8a4 b11 c
√
√
4
4
(b) 4x5 12x2
√
√
√
(c) 4 − 75 + 5 − 2
√
√
√
√
(d) 8 − 6 + 2 + 12
4. Multiply.
√
(a) ( 2 + x)2
√
√
√ √
(b) ( 2 − 2 3)( 2 + 2 3)
5. Write the expression using a single radical notation in simplest form.
q√
4
3
4x2
√
√
6
8
(b) 2 3
(a)
6. Simplify. Write complex expressions in a + bi form.
(a) (−3 + 4i)(5 − 2i)
2 − 3i
(b)
1 + 2i
(c) i142
(d) i−21
7. Rationalize denominator.
1
2xy
8x2 yz 4
√
1+ 2
√
(b)
3− 2
(a) √
5
8. Solve.
3
(a) (2 − 3x)− 2 = 27
√
√
(b) 2x − 1 − 4x + 5 = −2
9. Solve the equation by completing the square.
2x2 − 6x + 3 = 0
10. (a) Find the distance between (−2, −4) and (3, −1).
(b) Find the midpoint of (−2, −4) and (3, −1).
2
Related documents