Download Elementary Number Theory Fall 2014 Lecture 4: Distribution of

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Elementary Number Theory
Fall 2014
Lecture 4: Distribution of prime numbers
Distribution of prime numbers: There are infinitely many prime numbers. How are
these distributed among the natural numbers?
Define a function which gives the number of primes less than or equal to x.
π(x) = #{p ∈ P | p ≤ x}.
In 1792 Gausss conjectured that
π(x) ∼
x
as x 7→ ∞.
ln(x)
He later refined it to
∫
π(x) ∼ Li(x) =
2
x
dt
.
ln(t)
Hadamard and de la Vallee Poussin independently proved this conjecture in 1896. This
results is now known as the prime number theorem.
It follows that
π(x) ln(x)
= 1.
x−→∞
x
lim
1
Elementary Number Theory
Fall 2014
8
6
4
2
5
15
10
20
FIG. 1: π(x) for 1 ≤ x ≤ 20
25
20
15
10
5
20
40
60
80
100
FIG. 2: π(x) for 1 ≤ x ≤ 100
2
Elementary Number Theory
Fall 2014
150
125
100
75
50
25
200
400
600
800
1000
FIG. 3: π(x) for 1 ≤ x ≤ 1000
2200
2000
1800
1600
1400
12000 14000 16000 18000 20000
FIG. 4: π(x) for 10000 ≤ x ≤ 20000
3
Elementary Number Theory
Fall 2014
200
400
600
800
1000
8000
10000
1.18
1.16
1.14
FIG. 5:
π(x) ln(x)
2
for 2 ≤ x ≤ 1000
1.18
1.16
1.14
1.12
2000
FIG. 6:
4000
π(x) ln(x)
2
6000
for 2 ≤ x ≤ 10000
4
Elementary Number Theory
Fall 2014
1.14
1.13
1.12
1.11
20000 40000 60000 80000 100000
1.09
FIG. 7:
π(x) ln(x)
2
for 2 ≤ x ≤ 100000
1.07
1.065
1.06
1.055
10
2·10
10
4·10
10
6·10
10
8·10
11
1·10
1.045
FIG. 8:
π(x) ln(x)
2
for 2 ≤ x ≤ 1011
5
Elementary Number Theory
Fall 2014
4
3.5
3
2.5
2
1.5
4
FIG. 9: π(x) and
6
8
x
ln(x)
for 2 ≤ x ≤ 10
10
25
20
15
10
5
20
40
FIG. 10: π(x) and
60
x
ln(x)
80
100
for 2 ≤ x ≤ 100
6
Elementary Number Theory
Fall 2014
150
125
100
75
50
25
200
400
FIG. 11: π(x) and
600
x
ln(x)
800
1000
for 2 ≤ x ≤ 1000
1200
1000
800
600
400
200
2000
4000
FIG. 12: π(x) and
x
ln(x)
6000
8000
10000
for 2 ≤ x ≤ 10000
7
Related documents