Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
VND920-E DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY Table 1. General Features Type VND920-E Figure 1. Package RDS(on) IOUT VCC 16mΩ 35 A (*) 36 V ) s ( ct (*) Per channel with all the output pins connected to the PCB. CMOS COMPATIBLE INPUT ■ PROPORTIONAL LOAD CURRENT SENSE ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUTDOWN ■ CURRENT LIMITATION ■ PROTECTION AGAINST LOSS OF GROUND AND LOSS OF VCC ■ ■ ) (s VERY LOW STAND-BY POWER DISSIPATION u d o r P e t e l o SO-28 (DOUBLE ISLAND) s b O Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Built-in analog current sense output delivers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection. REVERSE BATTERY PROTECTION (**) ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ t c u d o r DESCRIPTION The VND920-E is a double chip device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). P e t e l o s b O Table 2. Order Codes Package PowerSO-10 Tube VND920-E Tape and Reel VND920TR-E Note: (**) See application schematic at page 9. Rev. 1 October 2004 1/19 VND920-E Figure 2. Block Diagram VCC 1 OVERVOLTAGE DETECTION VCC CLAMP UNDERVOLTAGE DETECTION GND 1 ) s ( ct Power CLAMP u d o DRIVER LOGIC INPUT 1 r P e CURRENT LIMITER t e l o OUTPUT 1 VDS LIMITER IOUT OVERTEMPERATURE DETECTION ) (s t c u d o r P e VCC CLAMP s b O OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION t e l o INPUT 2 CURRENT SENSE 1 VCC 2 GND 2 s b O K Power CLAMP DRIVER OUTPUT 2 LOGIC CURRENT LIMITER VDS LIMITER IOUT K OVERTEMPERATURE DETECTION 2/19 CURRENT SENSE 2 VND920-E Table 3. Absolute Maximum Ratings (Per each channel) Symbol VCC - VCC - IGND IOUT - IOUT IIN VCSENSE Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Current Sense Maximum Voltage Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) VESD Ptot Tj Tc TSTG Unit V V mA A A mA V +15 V V ct 2000 - CURRENT SENSE 5000 u d o 5000 - VCC Maximum Switching Energy (L=0.25mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=45A) Power Dissipation Tl≤25°C Junction Operating Temperature Case Operating Temperature Storage Temperature ) (s b O Pr V V V 355 mJ 6.25 (See note 1) Internally limited - 40 to 150 - 55 to 150 W °C °C °C ete l o s Note: 1. Per island (s) 4000 - INPUT - OUTPUT EMAX Value 41 - 0.3 - 200 Internally Limited - 21 +/- 10 -3 Table 4. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins od t c u r P e s b O t e l o VCC 1 1 28 GND 1 INPUT 1 CURRENT SENSE 1 NC NC VCC 1 OUTPUT 1 OUTPUT 1 OUTPUT 1 VCC 2 GND 2 INPUT 2 CURRENT SENSE 2 NC NC VCC 2 VCC1 OUTPUT 1 OUTPUT 1 OUTPUT 1 14 Connection / Pin Current Sense Floating To Ground Through 1KΩ resistor 15 N.C. X X OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 VCC 2 Output X Input X Through 10KΩ resistor 3/19 VND920-E Figure 3. Current and Voltage Conventions IS2 IS1 VCC2 VCC1 VCC1 VF1 (*) VCC2 IOUT1 IIN1 OUTPUT1 INPUT1 CURRENT SENSE 1 IOUT2 IIN2 OUTPUT2 INPUT2 VIN2 VOUT1 ISENSE1 VIN1 VSENSE1 VOUT2 ISENSE2 CURRENT SENSE 2 GROUND2 GROUND1 VSENSE2 ) s ( ct IGND2 IGND1 u d o (*) VFn = VCCn - VOUTn during reverse battery condition r P e Table 5. Thermal Data Symbol Rthj-lead Rthj-amb Rthj-amb Parameter Thermal Resistance Junction-lead Thermal Resistance Junction-ambient (one chip ON) Thermal Resistance Junction-ambient (two chips ON) let so b O Value 20 60 (1) 46 (1) 45 (2) 32 (2) Unit °C/W °C/W °C/W Note: (1) When mounted on a standard single-sided FR-4 board with 1cm 2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. Note: (2) When mounted on a standard single-sided FR-4 board with 6cm 2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. ) (s t c u ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) d o r (Per island) Table 6. Power Symbol VCC VUSD VOV P e Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down IOUT=10A; Tj =25°C 15 Unit V V V mΩ IOUT=10A 30 mΩ Clamp Voltage IOUT=3A; VCC=6V ICC=20mA (See note 2) Off State; VCC=13V; VIN=VOUT=0V 48 50 55 mΩ V 10 25 µA Supply Current Off State; VCC=13V; Tj=25°C; VIN=VOUT=0V 10 20 µA 5 mA 50 0 5 3 µA µA µA µA t e l o s b O RON Vclamp IS IL(off1) IL(off2) IL(off3) IL(off4) On State Resistance Off Off Off Off State State State State Output Current Output Current Output Current Output Current Test Conditions On State; VCC=13V; VIN=5V; IOUT=0; RSENSE=3.9KΩ VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; VCC=13V; Tj =125°C VIN=VOUT=0V; VCC=13V; Tj =25°C Note: 2. Vclamp and VOV are correlated. Typical difference is 5V. 4/19 Min 5.5 3 36 41 0 -75 Typ 13 4 Max 36 5.5 VND920-E ELECTRICAL CHARACTERISTICS (continued) Table 7. Switching (VCC =13V) Symbol td(on) td(off) Parameter Turn-on Delay Time Turn-off Delay Time Test Conditions RL=1.3Ω (see figure 2) RL=1.3Ω (see figure 2) dVOUT/ dt(on) Turn-on Voltage Slope RL=1.3Ω (see figure 2) dVOUT/ dt(off) Turn-off Voltage Slope RL=1.3Ω (see figure 2) Min Typ 50 50 See relative diagram See relative diagram Max V/µs V/µs ) s ( ct Table 8. Logic Input Symbol Parameter Test Conditions Min Symbol Parameter Test Conditions Min VIL Input Low Level IIL Low Level Input Current VIH Input High Level IIH High Level Input Current VI(hyst) Input Hysteresis Voltage VIN=1.25V VIN=3.25V Table 9. VCC - Output Diode Symbol t c u Forward on Voltage Vdemag VON P e let so b O Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis DC Short Circuit Current Turn-off Output Clamp Voltage Output Voltage Drop Limitation u d o Typ Pr Test Conditions VCC=13V IOUT=1A; Tj=-40°C....+150°C Unit Max Unit 1.25 V µA 3.25 V 10 0.5 Min. Min 150 135 7 30 µA V Typ. Typ 175 15 45 5V<VCC<36V IOUT=2A; VIN=0V; L=6mH Max 1 -IOUT=5A; Tj=150°C d o r Symbol TTSD TR Thyst b O Test Conditions Table 10. Protections (see note 3) Ilim ) (s Parameter VF so e t e l Typ Unit µs µs Max. Unit 0.6 V Max 200 75 Unit °C °C °C A 75 A VCC-41 VCC-48 VCC-55 V 50 mV Note: 3. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. 5/19 VND920-E ELECTRICAL CHARACTERISTICS (continued) Table 11. Current Sense (9V≤VCC≤16V) (See Fig. 4) Symbol K1 Parameter Test Conditions IOUT=1A; VSENSE=0.5V; IOUT/ISENSE dK1/K1 K2 Current Sense Ratio Drift IOUT/ISENSE dK2/K2 K3 Current Sense Ratio Drift IOUT/ISENSE dK3/K3 ISENSEO VSENSE VSENSEH RVSENSEH tDSENSE Current Sense Ratio Drift Analog Sense Leakage Current Tj= -40°C...150°C IOUT=1A; VSENSE=0.5V; Tj=25°C...150°C IOUT=10A; VSENSE=4V; Tj=25°C...150°C IOUT=30A; VSENSE=4V; r P e t e l o s b O 6/19 4400 6000 +10 Tj=-40°C...+150°C t e l o s b O Unit % 4200 4900 6000 4400 4900 5750 4200 4900 4400 4900 ) s ( ct +8 u d o r P e VCC=6...16V; IOUT=0A;VSENSE=0V; Note: 4. Current sense signal delay after positive input slope 3300 -6 Tj=-40°C...+150°C Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10KΩ Voltage VCC>8V; IOUT=10A; RSENSE=10KΩ Sense Voltage in Overtemperature VCC=13V; RSENSE=3.9KΩ conditions Analog Sense Output Impedance in VCC=13V; Tj>TTSD; All channels open Overtemperature Condition Current sense delay to 90% ISENSE (see note 4) response od Max -8 Tj=-40°C...+150°C IOUT=30A; VSENSE=4V; Tj=-40°C t c u Typ -10 Tj= -40°C...+150°C IOUT=10A; VSENSE=4V; Tj=-40°C ) (s Min 0 % 5500 5250 +6 % 10 µA 2 V 4 V 5.5 V 400 Ω 500 µs VND920-E Figure 4. IOUT/ISENSE Vs. IOUT IOUT/ISENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 typical value ) s ( ct min.Tj=25...150°C 4500 u d o min.Tj=-40°C 4000 r P e 3500 t e l o 3000 0 2 4 6 8 10 12 14 16 IOUT (A) ) (s 18 20 22 24 26 28 30 32 s b O Figure 5. Switching Characteristics (Resistive load RL=1.3Ω) t c u VOUT od 90% 80% r P e dVOUT/dt(off) dVOUT/dt(on) let o s b tr 10% tf t ISENSE O 90% INPUT t tDSENSE td(on) td(off) t 7/19 VND920-E Table 12. Truth Table (per each channel) CONDITIONS Normal operation INPUT L OUTPUT L H L H L H L L L VSENSEH 0 H L L L 0 0 H L L L 0 0 H L (Tj<TTSD) 0 H L L H (Tj>TTSD) VSENSEH 0 H L H L Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp Table 13. Electrical Transient Requirements On VCC Pin Test Pulse I II 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V e t e ol CLASS C E 8/19 ) s ( ct du e t e ol Pr o r P III IV -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V s b O ) (s t c u od ISO T/R 7637/1 s b O 0 TEST LEVELS ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CURRENT SENSE 0 Nominal < Nominal 0 Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω I TEST LEVELS RESULTS II III IV C C C C C C C C C C C E C C C C C E C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. VND920-E Figure 6. Waveforms NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCCn ) s ( ct VUSDhyst VUSD INPUTn LOAD CURRENTn u d o SENSEn r P e OVERVOLTAGE t e l o VOV VCCn VOVhyst VCC > VUSD INPUTn LOAD CURRENTn SENSEn t c u INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn ) (s s b O SHORT TO GROUND d o r P e s b O t e l o SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUTn LOAD CURRENTn SENSEn ISENSE= VSENSEH RSENSE 9/19 VND920-E Figure 7. Application Schematic +5V Rprot INPUT1 VCC1 VCC2 Dld Rprot C. SENSE 1 Rprot INPUT2 Rprot C. SENSE 2 OUTPUT1 µC RSENSE1,2 t e l o VGND AGAINST ) (s Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. t c u od r P e t e l o s b O 10/19 r P e RGND NETWORK u d o GND2 GND1 GND PROTECTION REVERSE BATTERY ) s ( ct OUTPUT2 DGND s b O This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. VND920-E Figure 8. Off State Output Current Figure 9. High Level Input Current Iih (uA) IL(off1) (uA) 9 5 8 4.5 Vin=3.25V 4 7 3.5 6 3 5 2.5 4 2 3 1.5 2 1 1 0.5 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 Figure 10. Input Clamp Voltage 50 7.8 45 40 7.4 7.2 (s) 7 ct 6.8 6.6 du 6.4 0 25 e t e ol o r P 50 75 100 150 175 r P e 125 -O 35 Tc= 150ºC 30 25 20 Tc= 25ºC 15 10 Tc= - 40ºC 5 0 150 5 175 10 15 20 25 30 35 40 Vcc (V) Tc (°C) Figure 13. Input High Level Figure 11. On State Resistance Vs Tcase s b O u d o bs Iin=1mA 7.6 6 125 t e l o Ron (mOhm) 8 6.2 100 Figure 12. On State Resistance Vs VCC Vicl (V) -25 75 Tc (°C) Tc (°C) -50 50 ) s ( ct Ron (mOhm) Vih (V) 50 3.6 45 3.4 Iout=10A Vcc=8V; 36V 40 3.2 35 3 30 25 2.8 20 2.6 15 2.4 10 2.2 5 2 0 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) 11/19 VND920-E Figure 14. Input Low Level Figure 17. Input Hysteresis Voltage Vil (V) Vhyst (V) 2.6 1.5 1.4 2.4 1.3 2.2 1.2 2 1.1 1 1.8 0.9 1.6 0.8 1.4 0.7 1.2 0.5 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 75 100 125 u d o 150 175 r P e Figure 18. Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 700 550 t e l o 500 650 s b O 450 Vcc=13V Rl=1.3Ohm 600 50 Tc (°C) Figure 15. Turn-on Voltage Slope 400 550 Vcc=13V Rl=1.3Ohm 350 )- 500 s ( t c 450 400 du 350 300 250 -50 -25 0 o r P 25 e t e ol 50 75 100 125 300 250 200 150 100 50 0 150 -50 175 -25 0 25 50 75 100 125 150 175 100 125 150 175 Tc (°C) Tc (ºC) Figure 16. Overvoltage Shutdown Figure 19. ILIM Vs Tcase s b O Vov (V) Ilim (A) 50 100 48 90 46 80 44 70 42 60 40 50 38 40 36 30 34 20 32 10 Vcc=13V 30 0 -50 -25 0 25 50 75 Tc (°C) 12/19 ) s ( ct 0.6 1 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) VND920-E Figure 20. Maximum turn off current versus load inductance ILMAX (A) 100 A B ) s ( ct C 10 u d o r P e t e l o 1 0.01 0.1 ) (s t c u A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC od Conditions: VCC=13.5V r P e s b O t e l o s b O1 10 100 L(mH) Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 13/19 VND920-E SO-28 Double Island Thermal Data Figure 21. Double Island PC Board ) s ( ct u d o Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 3cm2, 6cm2). r P e Table 14. Thermal Calculation According To The Pcb Heatsink Area Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb ) (s t e l o Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1≠Pdchip2 s b O RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance t c u d o r Figure 22. Rthj-amb Vs. PCB Copper Area In Open Box Free Air Condition P e RTHj_am b (°C/W) 70 t e l o s b O 60 RthA 50 RthB 40 RthC 30 20 10 0 14/19 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7 VND920-E Figure 23. SO-28 Thermal Impedance Junction Ambient Single Pulse Zth(°C/W) 100 0,5 cm ^2/is land 3 cm ^2/is land 6 cm ^2/is land 10 ) s ( ct One channel ON TwoOne channels ON c hannel ON on same chip 1 u d o Tw o channels ON r P e t e l o 0.1 0.01 0.0001 0.001 0.01 ) (s 0.1 1 time(s) t c u d o r Figure 24. Thermal fitting model of a two channels HSD in SO-28 O Tj_1 where C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 C2 R1 R2 1000 δ = tp ⁄ T Table 15. Thermal Parameter C1 C1 100 Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) P e Pd1 Tj_2 10 Pulse calculation formula let o s b s b O Pd2 T_amb Area/island (cm2) R1= (°C/W) R2= (°C/W) R3= (°C/W) R4= (°C/W) R5= (°C/W) R6= (°C/W) C1= (W.s/°C) C2= (W.s/°C) C3= (W.s/°C) C4= (W.s/°C) C5= (W.s/°C) C6= (W.s/°C) 0.5 0.02 0.1 2.2 11 15 30 0.0015 7.00E-03 1.50E-02 0.2 1.5 5 6 13 8 15/19 VND920-E PACKAGE MECHANICAL Table 16. SO-28 Mechanical Data millimeters Symbol Min A a1 b b1 C c1 D E e e3 F L S Typ Max 2.65 0.30 0.49 0.32 0.10 0.35 0.23 0.50 45° (typ.) 17.7 10.00 18.1 10.65 ) s ( ct 1.27 16.51 7.40 0.40 7.60 1.27 8° (max.) Figure 25. SO-28 Package Dimensions r P e t e l o ) (s t c u d o r P e t e l o s b O 16/19 s b O u d o VND920-E Figure 26. SO-28 Tube Shipment (No Suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 28 700 532 3.5 13.8 0.6 All dimensions are in mm. A ) s ( ct Figure 27. Tape And Reel Shipment (Suffix “TR”) u d o REEL DIMENSIONS r P e let Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) o s b O ) s ( t c 1000 1000 330 1.5 13 20.2 16.4 60 22.4 u d o r P e TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 t e l o Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing s b O W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) 16 4 12 1.5 1.5 7.5 6.5 2 End All dimensions are in mm. Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 17/19 VND920-E REVISION HISTORY Date Oct. 2004 Revision 1 - First Issue. Description of Changes ) s ( ct u d o r P e t e l o ) (s t c u d o r P e t e l o s b O 18/19 s b O VND920-E ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19