Download MTH 100 Test 4 practice spring 2014.tst

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MTH 100 Test 4 Practice Problems
Spring 2014
Find an equation of the line that satisfies the conditions.
Write the equation in slope-intercept form.
3
1) Through (2, 3); m = 8
10) -5x - 7y = -32
-2x + 2y = 16
Find the product.
11) (10m + 3)2
2) Through (4, 5); m = 3
12) (5x - 8y) 2
Solve the problem.
3) Find f(-4) when f(x) = 5x2 + 2x + 5.
4) Find f(-2) when f(x) =
Factor the trinomial completely.
13) x2 + 4xy - 12y2
3x + 5 2
x
14) 16x2 + 24x + 9
5) Find f(x + h) when f(x) = 3x2 - 4x + 5.
15) 15z 2 - 4z - 4
Simplify the expression so that no negative exponents
appear in the final result. Assume all variables represent
nonzero numbers.
2x3 y-3 -3
6)
x-5 y2
7)
Factor the polynomial completely.
16) 64y4 - 81
17) 25x2 + 9
18) 125a 3 - 27b3
3x4 y2 3
9xy2
19) 8s3 + 1
8) y =
3
x+7
5
20) 250k3 m - 128m 4
y
10
21) 64y6 - 49
5
-10
-5
5
10
Simplify the complex fraction.
y
3
22)
7
y- 7
x
-5
4+
-10
23)
Solve the system of equations.
9) -7x + 7y = 14
4x + 5y = 28
1
2
x
x 1
+
3
6
24)
25)
64x2 - 16y2
xy
36)
8 4
y x
37)
-27
4
- 1296
Simplify the root.
3
38)
x3
x-2
x-2 - y-2
Add or subtract as indicated. Write the answer in lowest
terms.
2
6
26) +
r r- 7
27)
3
39)
40)
3
7
+
2
2
y - 3y + 2 y - 1
x16
3
x21
Simplify the expression involving rational exponents.
41) 676 1/2
Solve the problem. Round your answer, as needed.
28) The distance of an object from a fulcrum is
DW
given by d =
. Find D if d = 3, w = 7, and
w
42) 815/4
43) (-16)1/2
W = 2.
44) -
29) A formula for the focal length of a lens is
ab
f=
b+a
25 1/2
36
45) 27-4/3
Calculate f (the focal length) for a = 14 cm and
b = 20 cm.
Write with radicals. Assume that all variables represent
positive real numbers.
46) (mn)1/5
Solve the formula for the specified variable.
1
30) V = Bh for h
3
47) (9py2 )1/7
Gm1 m 2
31) F =
for G
d2
Simplify by first converting to rational exponents. Assume
that all variables represent positive real numbers.
4
48) 3 16
Find the root if it is a real number.
32) 36
33)
-196
49)
u40
34)
441
16
50)
z6
35) -
3
51)
64
2
4
4y10
Use the rules of exponents to simplify the expression.
Write the answer with positive exponents. Assume that all
variables represent positive real numbers.
52) (b4 )3/4
67)
54) (8k3 m -6 )1/3
Find the distance between the pair of points.
69) (1, 5) and (-6, -6)
55) (256h 14k16)3/2
70) (-5, 5) and (5, -7)
x3/5
x6/5 · x-5
Simplify. Assume that all variables represent positive real
numbers.
71) 64 + 81
Multiply using the product rule.
4
4
57) 5 · 25
72) 2
74) 7
25
64
75) 3
62)
3
63)
66)
3
3
3
3+5
3
3x2
3
125x + 3
3
27x
Multiply, then simplify the product. Assume that all
variables represent positive real numbers.
77) 6( 216 - 96)
24
320
78) (5 +
-108
79) ( 3x + 3)( 7x - 3)
Express the radical in simplified form. Assume that all
variables represent positive real numbers.
64) 384x2
65) -
150
3
3
76) 20 2 - 5 250
Express the radical in simplified form.
60) 108
61) -
6 +9
73) 6 48x2 - 2 27x2 -
Simplify the radical. Assume that all variables represent
positive real numbers.
15
58)
r4
59)
8k9
Simplify the radical. Assume that all variables represent
positive real numbers.
4
68) 802
53) x1/7 · x6/7
56)
3
5)2
80) ( 5 + 1)( 5 - 1)
Rationalize the denominator. Assume that all variables
represent positive real numbers.
8
81)
3
12k7 q8
-64a 8 b5
3
82)
8z
7
96)
Rationalize the denominator. Assume that all variables
represent positive real numbers and that the denominator
is not zero.
3
83)
9- 2
84)
5
5 6- 5
85)
55+
-12
-4
Add or subtract as indicated. Write your answer in the
form a + bi.
97) (3 - 4i) + (6 + 7i)
98) (9 + 8i) - (2 + 8i) + (9 + 2i)
Multiply.
99) 9i(9 - 8i)
100) (8 - 3i)(3 + 2i)
2
2
101) (8i)(-4i)
Write the expression in lowest terms. Assume that all
variables represent positive real numbers.
45 - 81 15
86)
63
102) i(6 - 3i)(8 - 3i)
Write the expression in the form a + bi.
2
103)
5 - 3i
Solve the equation. Do not forget you have to show the
check for each answer you get.
87) q + 5 = 6
88)
6a - 5 -
89)
p2 - 3p + 49 = p + 4
90)
x2 + 4x + 24 + 3 = x
91)
92)
4
4 + 3i
5 + 3i
105)
-2i
4 - 3i
106)
1 - 7i
5 - 3i
4a + 8 = 0
Use the zero-factor property to solve the equation.
107) x2 + 2x - 15 = 0
x+2+7=0
3x + 1 = 3 +
x-4
Use the square root property to solve the equation.
108) x2 = 49
Write the number as a product of a real number and i.
Simplify the radical expression.
93) -9
94)
104)
109) (p - 3)2 = 7
Solve the equation by completing the square.
110) p2 + 3p - 9 = 0
-250
Multiply or divide as indicated.
95) -49 · -25
Find the nonreal complex solutions of the equation.
111) x2 + 4x + 53 = 0
4
Use the quadratic formula to solve the equation. (All
solutions are real numbers.)
112) 2n 2 = -10n - 7
113) 3x(x - 1) = 8
114) x2 = 9 - 4x
Use the quadratic formula to solve the equation.
115) 2x2 = -5x - 7
116) 8x2 + 7x = -2
117) 5x2 + 9x + 10 = 0
5
Answer Key
Testname: MTH 100 TEST 4 PRACTICE SPRING 2014
1) Use y-y1 =m(x-x1 )
3
y-3 = - (x - 2) and simplify.
8
3
15
y=- x+
8
4
2) y = 3x - 7
3) 77
1
4) 2
26)
8r - 14
r(r - 7)
27)
10y - 11
(y - 1)(y + 1)(y - 2)
31) G =
7) 3x11y4
3
8) Slope:
5
Fd2
m1m2
32) 6
33) Not a real number
21
34)
4
y
35) -4
36) -3
37) Not a real number
38) x
39) x8
10
5
-5
y2
y2 - x2
28) 10.5
29) 8.2 cm
3V
30) h =
B
5) 3x2 +6xh+3h 2 -4x-4h+5
y15
6)
8x24
-10
25)
5
10
40) x7
x
41) 26
42) 243
43) Not a real number
5
44) 6
-5
-10
1
81
9) {(2, 4)}
10) {(-2, 6)}
11) 100m 2 + 60m + 9
45)
12) 25x2 - 80xy + 64y2
13) (x + 6y)(x - 2y)
14) (4x + 3)(4x + 3)
15) (3z - 2)(5z + 2)
16) (8y2 + 9)(8y2 - 9)
7
47) 9py2
48) 81
49) u20
17) Prime
51)
46)
5
mn
50) z 3
2y5
52) b3
18) (5a - 3b)(25a 2 + 15ab + 9b2 )
19) (2s + 1)(4s2 - 2s + 1)
53) x
2k
54)
m2
20) 2m(5k - 4m)(25k2 + 20km + 16m 2 )
21) (8y3 - 7)(8y3 + 7)
22)
y(y - 7)
21
55) 4096h 21k24
56) x22/5
23)
12
x
57)
24) 8x + 4y
6
4
125
Answer Key
Testname: MTH 100 TEST 4 PRACTICE SPRING 2014
58)
59)
90) ∅
91) ∅
92) {5, 8}
15
r2
5
8
93) 3i
94) 5i 10
95) -35
96) 3
97) 9 + 3i
98) 16 + 2i
60) 6 3
61) -2 6
3
62) 4 5
63) Not a real number
64) 8x 6
65) -2k3 q4 3k
99) 72 + 81i
100) 30 + 7i
101) 32
3
66) -4a 2 b a 2 b2
67) 2k3
102) 42 + 39i
5
3
103)
i
+
17 17
68) 4 5
69) 170
70) 2 61
71) 17
72) 47 6
73) 17x 3
3
74) 12 3
75) 24 x
3
76) -5 2
77) 12
78) 30 + 10 5
79) x 21 - 3 3x + 3 7x - 9
83)
27 + 3 2
79
84)
30 + 1
29
6
8
i
25 25
106)
13 16
i
17 17
113)
3+
6
105 3 ,
105
6
114) {-2 + 13, -2 - 13}
-5 + i 31 -5 - i 31
115)
,
4
4
27 - 10 2
85)
23
86)
105)
111) {-2 + 7i, -2 - 7i}
-5 + 11 -5 - 11
112)
,
2
2
80) 4
8 3
81)
3
8z 7
7
29
3
i
+
34 34
107) {-5, 3}
108) {7, -7}
109) 3 + 7, 3 - 7
-3 + 3 5 -3 - 3 5
110)
,
2
2
3
82)
104)
5 - 9 15
7
87) {31}
13
88)
2
89) {3}
7
116)
-7 + i 15 -7 - i 15
,
16
16
117)
-9 + i 119 -9 - i 119
,
10
10
Related documents