Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
𝜇 FM Transceiver By Sewvanda Hewa Thumbellage Don, Meshegna Shumye, Owen Paxton, Mackenzie Cook, Jonathon Lee, Mohamed Khelifi, Rami Albustami, Samantha Trifoli 1 2 Motivations 3 Applications • • • • • • Radios Walkie-Talkies Spy Equipment Without the Phone!!! Security and Alarm Systems Carleton Class room Microphones Heart Rate monitors and Medical Applications 4 Block Diagram LNA Feedback Loop Channel Select Filter Mixer Channel Select Voltage Control Oscillators Bandpass Filter PA Phase Locked loop FM demodulator Audio Amp Frequency Synthesis FM modulator 5 1.3mm 3mm 6 Transistor Modelling and The Carleton University Fabrication Process Samantha Trifoli [email protected] 7 Transistor Modelling 5µm Length Transistor with Original Parameter Values VG=5V VG=4V VG=3V VG=2V VG=0V Extracted data Originally Calculated Parameter fit data VG=1V 8 Transistor Modelling 5µm Length Transistor with Parameter Fit Values VG=5V VG=4V VG=3V VG=2V VG=0V Extracted data Parameter fit data VG=1V 9 Transistor Modelling 2.5µm Length Transistor with Original Parameter Values VG=5V VG=4V VG=3V VG=2V VG=1V VG=0V Extracted data Originally Calculated Parameter fit data 10 Transistor Modelling 2.5µm Length Transistor with Parameter Fit Values VG=5V VG=4V VG=3V VG=2V VG=1V VG=0V Extracted data Parameter fit data 11 Minimum Transistor Length • Minimum transistor length in the Carleton Fabrication Lab is typically 5µm • We pushed it to 2.5µm for higher speed in our circuit 5µm 2.5µm 12 Metal Mask Reticle 13 Photoresist • Machine used to spin on the photoresist in the Carleton University Fabrication Lab 14 Process Variation • Variations in the fabrication of our circuits causes variation in substrate doping and threshold voltage 15 Mixer Sewvanda HT Don [email protected] 16 Mixer Function • Obtain a desired frequency using two given signals (RF and LO) RF Signal 100.2MHZ f Desired Frequency Local Oscillator 17 Mixer Function f1-f2f f1 100 MHz 10 MHZ f1+f2f 120 MHz f2 110 MHZ 18 Challenges • Getting the Required Gain – No full size resistors – Resistors made from MOSFETs • Third Order Intermodulation Products – Side effects of the mixing process – Falls near the Output Frequency making detection complex 19 Intermodulation Products f1 2f1-f2 f2 2f2-f1 20 Schematic Output Resistors Local Oscillator RF Modulation Current Mirror 21 FM POWER AMPLIFIER Channel Select Voltage Control Oscillators Bandpass Filter PA Frequency Synthesis FM modulator Rami Albustami [email protected] 22 What is a Power Amplifier? • Boosts the Output Power • The final component just before the antenna in a transmitter 23 Schematic VDD Large! Vout Vin 24 With Input Power = -20 dBm 6.5 6 Vout (dBm) 5.5 5 4.5 4 3.5 0 20 40 60 80 100 120 140 160 180 200 Frequency (MHz) Gain ≈ 25.7 dB 25 1 dB Compression Point Power Amplifiers trades-off efficiency & linearity 1 dB Compression Point (-9,16.8) 25.00 Vout (dBm) 15.00 Gain ≈ 25.7 dB -55.00 -45.00 -35.00 5.00 -25.00 -15.00 -5.00 5.00 15.00 -5.00 -15.00 Pin (dBm) -25.00 26 How far will the signal travel? 50 meters Free Space Path Loss ≈ 46.4 dB FSPL(dB) = 32.45 \ With Output Power ≈ 5.7 dBm Power Received ≈ -40.7 dBm 27 PLL Frequency Synthesizer Mixer LNA Feedback Loop Channel Select Filter Phase Locked loop FM demodulator Audio Amp Frequency Synthesis Bandpass Filter PA FM modulator Owen Paxton [email protected] 28 Frequency Synthesizer Phase Frequency Detector Charge Pump VCO CLK Divide By N 29 Programmable Divide By N Challenges: • Range 80MHz-110MHz • Step Size 200KHz • Divide by 400-550 Solution: • Counter with programmable reset 30 Phase Frequency Detector • Consists of two flip flops and a NAND gate D CLK Q 31 D Flip Flop Simulation Voltage (V) Time (us) 32 Charge Pump 33 Current Mirror Simulation Current (mA) Input Voltage (V) 34 35 References [1] J.W.M. Rogers and C. Plett, Radio Frequency Integrated Circuit Design, 2nd ed., Norwood, MA; Artech House, 2010. [2] Adel Sedra and Kenneth Smith, Microelectronics Circuits, 6th ed., Oxford University, 2010. [3] Erik Dahlman, 3G Evolution, 2nd ed., Burlington, Ma; 2008. [4] Steve C. Cripps, RF Power Amplifiers for Wireless Communication, Norwood, MA; Artech House, 1999. 36 Q&A 37