Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CHAPTER 9 CALCULATIONS FROM CHEMICAL EQUATIONS SOLUTIONS TO REVIEW QUESTIONS 1. A mole ratio is the ratio between the mole amounts of two atoms and/or molecules involved in a chemical reaction. 2. In order to convert grams to moles the molar mass of the compound under consideration needs to be determined. 3. The balanced equation is Ca3 P2 þ 6 H2 O ! 3 CaðOHÞ2 þ 2 PH3 2 mol PH3 ¼ 2 mol PH3 (a) Correct: ð1 mol Ca3 P2 Þ 1 mol Ca3 P2 (b) Incorrect: 1 g Ca3P2 would produce 0.4 g PH3 1 mol 2 mol PH3 33:99 g ð1 g Ca3 P2 Þ ¼ 0:4 g PH3 182:2 g 1 mol Ca3 P2 mol (c) (d) (e) Correct: see equation Correct: see equation Incorrect: 2 mol Ca3P2 requires 12 mol H2O to produce 4.0 mol PH3. 6 mol H2 O ð2 mol Ca3 P2 Þ 1 mol Ca3 P2 ¼ 12 mol H2 O (f) Correct: 2 mol Ca3P2 will react with 12 mol H2O (3 mol H2O are present in excess) and 6 mol Ca(OH)2 will be formed. 3 mol CaðOHÞ2 ð2 mol Ca3 P2 Þ ¼ 6 mol CaðOHÞ2 1 mol Ca3 P2 1 mol 6 mol H2 O 18:02 g (g) Incorrect: ð200: g Ca3 P2 Þ ¼ 119 g H2 O 182:2 g 1 mol Ca3 P2 mol (h) The amount of water present (100. g) is less than needed to react with 200. g Ca3P2 H2O is the limiting reactant. Incorrect: water is the limiting reactant. 1 mol 2 mol PH3 33:99 g ð100: g H2 OÞ ¼ 62:9 g PH3 ðtheoreticalÞ 18:02 g 6 mol H2 O mol - 84 - - Chapter 9 4. The balanced equation is 2 CH4 þ 3 O2 þ 2 NH3 ! 2 HCN þ 6 H2 O (a) Correct 2 mol HCN ¼ 10:7 mol HCN ðnot 12 mol HCNÞ (b) Incorrect: ð16 mol O2 Þ 3 mol O2 (c) Correct 6 mol H2 O ¼ 36 mol H2 O ðnot 4 mol H2 OÞ (d) Incorrect: ð12 mol HCNÞ 2 mol HCN (e) Correct (f) Incorrect: O2 is the limiting reactant 2 mol HCN ¼ 2 mol HCN ðnot 3 mol HCNÞ ð3 mol O2 Þ 3 mol O2 5. The theoretical yield of a chemical reaction is the maximum amount of product that can be produced based on a balanced equation. The actual yield of a reaction is the actual amount of product obtained. 6. You can calculate the percent yield of a chemical reaction by dividing the actual yield by the theoretical yield and multiplying by one hundred. - 85 - - Chapter 9 - SOLUTIONS TO EXERCISES 1. (a) (b) (c) (d) 2. (a) (b) (c) (d) 3. (a) (b) (c) (d) (e) 4. (a) (b) (c) 1 mol ð25:0 g KNO3 Þ ¼ 0:247 mol KNO3 101:1 g 1 mol ð56 mmol NaOHÞ ¼ 0:056 mol NaOH 1000 mmol 1 mol 2 ¼ 4:4 mol ðNH4 Þ2 C2 O4 ð5:4 10 gðNH4 Þ2 C2 O4 Þ 124:1 g The conversion is: mL sol ! g sol ! g H2SO4 ! mol H2SO4 1:727 g 0:800 g H2 SO4 1 mol ð16:8 mL solutionÞ ¼ 0:237 mol H2 SO4 g solution mL 98:09 g 1000 g 1 mol ð2:10 kg NaHCO3 Þ ¼ 25:0 mol NaHCO3 kg 84:01 g 1g 1 mol ð525 mg ZnCl2 Þ ¼ 3:85 103 mol ZnCl2 1000 mg 136:3 g 1 mol 24 ð9:8 10 molecules CO2 Þ ¼ 16 mol CO2 6:022 1023 molecules 0:789 g 1 mol ð250 mL C2 H5 OHÞ ¼ 4:3 mol C2 H5 OH mL 46:07 g 106:9 g ¼ 273 g FeðOHÞ3 ð2:55 mol FeðOHÞ3 Þ mol 1000 g ð125 kg CaCO3 Þ ¼ 1:25 105 g CaCO3 kg 17:03 g ð10:5 mol NH3 Þ ¼ 179 g NH3 mol 1 mol 36:46 g ð72 mmol HClÞ ¼ 2:6 g HCl 1000 mmol mol 3:119 g ð500:0 mL Br2 Þ ¼ 1559:5 g Br2 ¼ 1:560 103 g Br2 mL 154:8 g ð0:00844 mol NiSO4 Þ ¼ 1:31 g NiSO4 mol 60:05 g ð0:0600 mol HC2 H3 O2 Þ ¼ 3:60 g HC2 H3 O2 mol 514:2 g ð0:725 mol Bi2 S3 Þ ¼ 373 g Bi2 S3 mol - 86 - - Chapter 9 (d) (e) 1 mol 180:2 g ð4:50 10 molecules C6 H12 O6 Þ ¼ 1:35 g C6 H12 O6 mol 6:022 1023 molecules 1:175 g 0:200 g K2 CrO4 ð75 mL solutionÞ ¼ 18 g K2 CrO4 g solution mL 21 5. Larger number of molecules: 10.0 g H2O or 10.0 g H2O2 Water has a lower molar mass than hydrogen peroxide. 10.0 grams of water has a lower molar mass, contains more moles, and therefore more molecules than 10.0 g of H2O2. 6. Larger number of molecules: 25.0 g HCl or 85 g C6H12O6 1 mol 6:022 1023 molecules ð25:0 g HClÞ ¼ 4:13 1023 molecules HCl 36:46 g mol 1 mol 6:022 1023 molecules ð85:0 g C6 H12 O6 Þ ¼ 2:84 1023 molecules C6 H12 O6 180:2 g mol HCl contains more molecules 7. Mole Ratios 12 CO 2 þ 11 H 2O ! C12 H22 O11 þ 12 O2 (a) (b) (c) 12 mol CO2 11 mol H2 O 11 mol H2 O 1 mol C12 H22 O11 (d) 12 mol O2 12 mol CO2 (f) 12 mol O2 1 mol C12 H22 O11 6 mol O2 1 mol C4 H9 OH 5 mol H2 O 6 mol O2 (d) 1 mol C4 H9 OH 4 mol CO2 5 mol H2 O 1 mol C4 H9 OH 4 mol CO2 5 mol H2 O (f) (e) 1 mol C12 H22 O11 12 mol CO2 11 mol H2 O 12 mol O2 8. Mole ratios C4 H9 OH þ 6 O 2 ! 4 CO 2 þ 5 H 2O (a) (b) (c) (e) 9. CO2 þ 4 H 2 ! CH 4 þ 2 H2O 2 mol H2 O ¼ 50: mol H2 O (a) ð25 mol CO2 Þ 1 mol CO2 1 mol CH4 ¼ 6:0 mol CH4 (b) ð12 mol H2 OÞ 2 mol H2 O - 87 - 4 mol CO2 6 mol O2 - Chapter 9 10. The balanced equation is H2 SO4 þ 2 NaOH ! Na2 SO4 þ 2 H 2O 2 mol NaOH ¼ 34 mol NaOH (a) ð17 mol H2 SO4 Þ 1 mol H2 SO4 1 mol Na2 SO4 (b) ð21 mol NaOHÞ ¼ 11 mol Na2 SO4 2 mol NaOH 11. The balanced equation is MnO2 ðsÞ þ 4 HClðaqÞ ! Cl2 ðgÞ þ MnCl2 ðaqÞ þ 2 H2 OðlÞ 4 mol HCl ¼ 4:20 mol HCl (a) ð1:05 mol MnO2 Þ 1 mol MnO2 1 mol MnCl2 (b) ð1:25 mol H2 OÞ ¼ 0:625 mol MnCl2 2 mol H2 O 12. Al4 C3 þ 12 H2 O ! 4 AlðOHÞ3 þ 3 CH 4 1 mol 12 mol H2 O ¼ 8:33 mol H2 O (a) ð100: g Al4 C3 Þ 144:0 g 1 mol Al4 C3 4 mol AlðOH3 Þ ¼ 0:800 mol AlðOHÞ3 (b) ð0:600 mol CH4 Þ 3 mol CH4 13. Grams of CaCl2 CaCO3 þ 2 HCl ! CaCl 2 þ H2 O þ CO 2 The conversion is: g CaCO3 ! mol CaCO3 ! mol CaCl2 ! g CaCl2 1 mol 1 mol CaCl2 111:0 g ð50:0 g CaCO3 Þ ¼ 55:4 g CaCl2 100:1 g 1 mol CaCO3 mol 14. Grams of AlBr3 2 Al þ 6 HBr ! 2 AlBr3 þ 3 H 2 The conversion is: g Al ! mol Al ! mol AlBr3 ! g AlBr3 1 mol 2 mol AlBr3 266:7 g ð25:2 g AlÞ ¼ 249 g AlBr3 2 mol Al 26:98 g mol 15. The balanced equation is Fe2 O3 þ 3C ! 2Fe þ 3CO The conversion is: kg Fe2 O3 ! kmol Fe2 O3 ! kmol Fe ! kg Fe 55:85 kg 2 kmol Fe 1 kmol ð125 kg Fe2 O3 Þ ¼ 87:4 kg Fe kmol 159:7 kg 1kmol Fe2 O3 - 88 - - Chapter 9 16. The balanced equation is 3 Fe þ 4 H2 O ! Fe3O4 þ 4 H 2 Calculate the grams of both H2O and Fe to produce 375 g Fe3O4 1 mol 4 mol H2 O 18:02 g ð375 g Fe3 O4 Þ ¼ 117 g H2 O 231:6 g 1 mol Fe3 O4 mol 1 mol 3 mol Fe 55:85 g ð375 g Fe3 O4 Þ ¼ 271 g Fe 231:6 g 1 mol Fe3 O4 mol 17. The balanced equation is: 2 C 12H 4Cl 6 þ 23 O 2 þ 2 H2O ! 24 CO2 þ 12 HCl 2 mol H2 O ¼ 0:870 mol H2 O (a) ð10:0 mol O2 Þ 23 mol O2 12 mol HCl 36:46 g (b) ð15:2 mol H2 OÞ ¼ 3:33 103 g HCl 2 mol H2 O mol 1 mol 24 mol CO2 (c) ð76:5 g HClÞ ¼ 4:20 mol CO2 12 mol HCl 36:46 g 1 mol 2 mol C12 H4 Cl6 360:9 g (d) ð100:25 g CO2 Þ ¼ 68:51g C12 H4 Cl6 24 mol CO2 44:01 g mol 1000 g 1 mol 12 mol HCl 36:46 g (e) ð2:5 kg C12 H4 Cl6 Þ ¼ 1:5 103 g HCl 1 kg 360:9 g 2 mol C12 H4 Cl6 mol 18. 4 HgS þ 4 CaO ! 4 Hg þ 3 CaS þ CaSO4 3 mol CaS (a) ð2:5 mol CaOÞ ¼ 1:9 mol CaS 4 mol CaO 4 mol Hg 200:6 g (b) ð9:75 mol CaSO4 Þ ¼ 7:82 103 g Hg 1 mol CaSO4 mol 1 mol 4mol CaO (c) ð97:25 g HgSÞ ¼ 0:4179 mol CaO 232:7 g 4mol HgS 1 mol 4mol Hg 200:6 g (d) ð87:6 g HgSÞ ¼ 75:5 g Hg 232:7 g 4mol HgS mol 1000g 1 mol 3mol CaS 72:15 g ¼ 2:50 103 g CaS (e) ð9:25 kg HgÞ 1kg 200:6 g 4mol Hg 1 mol 19. (a) Hydrogen Oxygen Hydrogen is the limiting reactant. ! - 89 - - Chapter 9 (b) Hydrogen Bromine Bromine is the limiting reactant. ! 20. (a) Lithium Iodine No limiting reactant. ! (b) Silver Chlorine Silver is the limiting reactant. ! 21. (a) Potassium Chlorine Potassium is the limiting reactant. ! (b) Aluminum Oxygen Oxygen is the limiting reactant. ! 22. (a) Nitrogen Oxygen Oxygen is the limiting reactant. ! - 90 - - Chapter 9 (a) Iron Hydrogen Oxygen Water is the limiting reactant. ! 23. (a) KOH 16:0 g þ HNO3 12:0 g ! KNO3 þ H2 O Choose one of the products and calculate its mass that would be produced from each given reactant. Using KNO3 as the product: 1 mol 1 mol KNO3 101:1 g ð16:0 g KOHÞ ¼ 28:8 g KNO3 1 mol KOH 56:10 g mol 1 mol 1 mol KNO3 101:1 g ð12:0 g HNO3 Þ ¼ 19:3 g KNO3 1 mol KOH 63:02 g mol Since HNO3 produces less KNO3, it is the limiting reactant and KOH is in excess. (b) 2 NaOH 10:0 g þ H2 SO4 10:0 g ! Na2 SO4 þ 2 H2O Choose one of the products and calculate its mass that would be produced from each given reactant. Using H2O as the product: 1 mol 2 mol H2 O 18:02 g ð10:0 g NaOHÞ ¼ 4:51 g H2 O 40:00 g 2 mol NaOH mol 1 mol 2 mol H2 O 18:02 g ð10:0 g H2 SO4 Þ ¼ 3:67 g H2 O 98:09 g 1 mol H2 SO4 mol Since H2SO4 produces less H2O, it is the limiting reactant and NaOH is in excess. 24. (a) 2 BiðNO 3Þ3 50:0 g þ 3 H 2S 6:00 g ! Bi2 S3 þ 6 HNO3 Choose one of the products and calculate its mass that would be produced from each given reactant. Using Bi2S3 as the product: 1 mol 1 mol Bi2 S3 514:2 g ¼ 32:5 g Bi2 S3 ð50:0 g BiðNO3 Þ3 Þ 395:0 g 2 mol BiðNO3 Þ3 mol 1 mol 1 mol Bi2 S3 514:2 g ð6:00 g H2 SÞ ¼ 30:2 g Bi2 S3 3 mol H2 S 34:09 g mol Since H2S produces less Bi2S3, it is the limiting reactant and Bi(NO3)3 is in excess. - 91 - - Chapter 9 (b) 3 Fe 40 :0 g þ 4 H2 O 16:0 g ! þ Fe3 O4 4 H2 Choose one of the products and calculate its mass that would be produced from each given reactant. Using H2 as the product: 1 mol 4 mol H2 2:016 g ð40:0 g FeÞ ¼ 1:93 g H2 3 mol Fe 55:85 g mol 1 mol 4 mol H2 2:016 g ð16:0 g H2 OÞ ¼ 1:79 g H2 18:02 g 4 mol H2 O mol Since H2O produces less H2, it is the limiting reactant and Fe is in excess. 25. Limiting reactant calculations 2 AlðOHÞ3 þ 3 H2 SO4 ! Al 2ðSO 4Þ3 þ 6 H2 O (a) Reaction between 35.0 g Al(OH)3 and 35.0 g H2SO4. Convert each amount to moles of Al2(SO4)3. 1 mol Al2 ðSO4 Þ3 1 mol ¼ 0:224 mol Al2 ðSO4 Þ3 ð35:0 g AlðOHÞ3 Þ 2 mol AlðOHÞ3 78:00 g 1 mol Al2 ðSO4 Þ3 1 mol ¼ 0:119 mol Al2 ðSO4 Þ3 ð35:0 g H2 SO4 Þ 3 mol H2 SO4 98:09 g H2SO4 is the limiting reactant. The yield is 0.119 mol Al2(SO4)3 (b) Reaction between 45.0 g H2SO4 and 25.0 g Al(OH)3. Calculate the grams of Al2(SO4)3 from each reactant 1 mol Al2 ðSO4 Þ3 1 mol 342:2 g ð45:0 g H2 SO4 Þ ¼ 52:3 g Al2 ðSO4 Þ3 3 mol H2 SO4 98:09 g mol 1 mol 1 mol Al2 ðSO4 Þ3 342:2 g 25:0 g AlðOHÞ3 ¼ 54:8 g Al2 ðSO4 Þ3 2 mol AlðOHÞ3 78:09 g mol H2SO4 is the limiting reactant. The yield is 52.3 g Al2 (SO4)3 Al(OH)3 is the excess reactant. (c) Reaction between 2.5 mol Al(OH)3 and 5.5 mol H2SO4. Convert each amount to moles of product. 1 mol Al2 ðSO4 Þ3 2:5 mol AlðOHÞ3 ¼ 1:3 mol Al2 ðSO4 Þ3 2 mol AlðOHÞ3 1 mol Al2 ðSO4 Þ3 ¼ 1:8 mol Al2 ðSO4 Þ3 ð5:5 mol H2 SO4 Þ 3 mol H2 SO4 Al(OH)3 is the limiting reactant. 1.3 mol Al2 (SO4)3 produced 6 mol H2 O ¼ 7:5 mol H2 S produced 2:5 mol AlðOHÞ3 2 mol AlðOHÞ3 3 mol H2 SO4 ¼ 3:8 mol H2 SO4 produced 2:5 mol AlðOHÞ3 2 mol AlðOHÞ3 - 92 - - Chapter 9 5:5 mol H2 SO4 3:8 mol H2 SO4 ¼ 1:7 mol H2 SO4 unreacted When the reaction is complete, 1.3 mol Al2(SO4)3, 7.5 mol H2O, and 1.7 mol H2SO4 will be in the container. 26. The balanced equation is P4 þ 6 Cl2 ! 4 PCl3 (a) Reaction between 20.5 g P4 and 20.5 g Cl2 Convert each amount to moles of PCl3 1 mol 4 mol PCl3 ¼ 0:662 mol PCl3 ð20:5 g P4 Þ 123:9 g 1 mol P 4 1 mol 4 mol PCl3 ¼ 0:193 mol PCl3 ð20:5 g Cl2 Þ 6 mol Cl2 70:90 g (b) (c) Cl2 is the limiting reactant. The yield is 0.193 mol PCl3. Reaction between 55 g Cl2 and 25 g P4. Calculate the grams of PCl3 from each reactant. 1 mol 4 mol PCl3 137:3 g ð55 g Cl2 Þ ¼ 71 g PCl3 6 mol Cl2 70:90 g mol 1 mol 4 mol PCl3 137:3 g ð25 g P4 Þ ¼ 1:1 102 g PCl3 1 mol P4 123:9 g mol Cl2 is the limiting reactant. The yield is 71 g PCl3. P4 is the excess reactant. Reaction between 15 mol P4 and 35 mol Cl2. Convert each amount to moles of product. 4 mol PCl3 ¼ 60: mol PCl3 ð15 mol P4 Þ 1 mol P4 4 mol PCl3 ¼ 23 mol PCl3 produced ð35 mol Cl2 Þ 6 mol Cl2 Cl2 is the limiting reactant. 1 mol P4 ¼ 5:8 mol P4 reacted ð35 mol Cl2 Þ 6 mol Cl2 15 mol P4 5:8 mol P4 ¼ 9 mol P4 left over When the reaction is complete, 23 mol PCl3 and 9 mol P4 will be the container. 27. X 8 þ 12 O2 ! 8 XO3 The conversion is: g O2 ! mol O2 ! mol X8 1 mol 1 mol X 8 ¼ 0:3125 mol X 8 ð120:0 g O2 Þ 80:0 g X 8 ¼ 0:3125 mol X 8 32:00 g 12 mol O2 80:0 g ¼ 256 g= mol X 8 0:3125 mol g 256 mol ¼ 32:0 g molar mass X ¼ 8 mol Using the periodic table we find that the element with 32.0 g/mol is sulfur. - 93 - - Chapter 9 28. X þ 2 HCl ! XCl 2 þ H 2 The conversion is: g H 2 ! mol H 2 ! mol X 1 mol 1 mol X ¼ 1:20 mol X ð2:42 g H2 Þ 2:016 g 1 mol H2 78:5 g X ¼ 1:20 mol X 78:5 g ¼ 65:4 g=mol 1:20 mol Using the periodic table we find that the element with atomic mass 65.4 is zinc. 29. Limiting reactant calculation and percent yield Fe2 O3 þ 3 CO ! 2 Fe þ 3 CO 2 1000 g 1 mol 2 mol Fe 55:85 g ð15:0 kg Fe2 O3 Þ ¼ 1:05 104 g Fe kg 159:7 g 1 mol Fe2 O3 mol 1000 g 1 mol 2 mol Fe 55:85 g ð9:0 kg COÞ ¼ 1:20 104 g Fe kg 28:01 g 3 mol CO mol The limiting reactant is Fe2O3. 1.05 104 g Fe is the theoretical yield. 1 kg ð1:05 10 gÞ ¼ 10:5 kg Fe 1000 g actual yield 8:5 kg Percent yield ¼ ð100Þ ¼ ð100Þ ¼ 81% yield of Fe theoretical yield 10:5 kg 4 30. CuðsÞ þ 2 Ag NO3ðaqÞ ! 2 AgðsÞ þ CuðNO 3Þ2 ðaqÞ 1 mol 2 mol Ag 107:9 g ð125 g CuÞ ¼ 424 g Ag 63:55 g 1 mol Cu mol 1 mol 2 mol Ag 107:9 g ð275 g AgNO3 Þ ¼ 175 g Ag 169:9 g 2 mol AgNO3 mol The limiting reactant is AgNO3. 175 g Ag is the theoretical yield Percent yield ¼ 31. (a) actual yield 135 g ð100Þ ¼ ð100Þ ¼ 77:1% yield of Ag theoretical yield 175 g Limiting reactant problem 3 Cu þ 8 HNO3 ! 3 CuðNO3 Þ2 þ 4 H2 O þ 2 NO 1 mol 3 mol CuðNO3 Þ2 187:6 ð27:5 g CuÞ ¼ 81:2 g CuðNO3 Þ2 3 mol Cu 63:55 1 mol 1 mol 3 mol CuðNO3 Þ2 187:6 g ð125 g HNO3 Þ ¼ 140 g CuðNO3 Þ2 8 mol HNO3 63:02 g 1 mol - 94 - - Chapter 9 (b) (c) The excess reactant is HNO3 The percent yield is 87.3%. The actual yield is ð0:873Þð81:2Þ ¼ 70:9 g CuðNO3 Þ2 actual yield 32. Fe2 O3(s) þ 6 HCl(aq) ! 2 FeCl3(aq) þ 3H2O(l) (a) (b) Limiting reactant problem. 1 mol 2 mol FeCl3 ð35 g Fe2 O3 Þ ¼ 0:44 mol FeCl3 159:7 g 1 mol Fe2 O3 1 mol 2 mol FeCl3 ¼ 0:32 mol FeCl3 ð35 g HClÞ 6 mol HCl 36:46 g HCl is the limiting reactant. 1 mol 3 mol H2 O ð35 g HClÞ ¼ 0:48 mol H2 O 36:46 g 6 mol HCl 0.32 mol FeCl3 and 0.48 mol H2O are the theoretical yields. Fe2O3 is the excess reactant. 1 mol 1 mol Fe2 O3 159:7 g ð35 g HClÞ ¼ 26 g Fe2 O3 reacted 6 mol HCl 36:46 g mol 35 g Fe2 O3 26 g Fe2 O3 ¼ 9 g Fe2 O3 excess (c) 162:2 g ¼ 48 g FeCl3 The percent yield is 92.5%. The actual yield is ð0:925Þð0:32 mol FeCl3 Þ mol 33. No. There are not enough screwdrivers, wrenches or pliers. 2400 screwdrivers, 3600 wrenches and 1200 pliers are needed for 600 tool sets. 34. The balanced equation is C6 H12 O6 ! 2 C2H5OH þ 2 CO 2 453:6 g 1 mol 2 mol C2 H5 OH 46:07 g 1 mL 1L ¼ 169 L C2 H5 OH ð575 lb C6 H12 O6 Þ lb 180:2 g 1 mol C6 H12 O6 mol 0:789 g 1000 mL 35. Consider the reaction A ! 2B and assume that you have 1 gram of A. This does not guarantee that you will produce 1 gram of B because A and B have different molar masses. One gram of A does not contain the same number of molecules as 1 gram of B. However, 1 mole of A does have the same number of molecules as one mole of B. (Remember, 1 mole ¼ 6.022 1023 molecules always.) If you determine the number of moles in one gram of A and multiply by 2 to get the number of moles of B . . . then from that you can determine the grams of B using its molar mass. Equations are written in in terms of moles not grams. 36. 4 KO2 þ 2 H2O þ 4 CO2 ! 4 KHCO3 þ 3 O2 (a) 0:85 g CO2 1 mol 4 mol KO2 0:019 mol KO2 ¼ min min 44:01 g 4 mol CO2 0:019 mol KO2 ð10:0minÞ ¼ 0:19 mol KO2 min - 95 - - Chapter 9 - (b) g CO2 mol CO2 mol O2 g O2 g O2 ! ! ! ! min min min min hr 0:85 g CO2 1 mol 3 mol O2 32:00 g 60 min 28 g O2 ¼ min hr 44:01 g 4 mol CO2 1:0 mol 1:0 hr The conversion is: H SO ! 12 C þ11 H O 2 37. C12 H22 O11 (a) 4 2 453:6 g 1 mol 12 mol C 12:01 g ð2:0 lb C12 H22 O11 Þ ¼ 3:8 102 g C lb 342:3 g 1 mol C12 H22 O11 mol 453:6 g 1 mol 11 mol H2 O 18:02 g ð2:0 lb C12 H22 O11 Þ ¼ 5:3 102 g H2 O lb 342:3 g 1 mol C12 H22 O11 mol From 2:0 lb C12 H22 O11 , 3:8 102 g C and 5:3 102 g H2 O are yielded. (b) ð25:2 g C12 H22 O11 Þ 1 mol C12 H22 O11 11 mol H2 O 18:02 g 1 mL ¼ 14:7 mL H2 O 1 mol C12 H22 O11 mol 0:994 g 342:3 g 38. 2 CH3OH þ 3 O2 ! 2 CO2 þ 4 H2O The conversion is: mL CH3 OH ! g CH3 OH ! mol CH3 OH ! mol O2 ! g O2 0:72 g 1 mol 3 mol O2 32:00 g ð60:0 mL CH3 OHÞ ¼ 65 g O2 mL 32:04 g 2 mol CH3 OH mol 39. The balanced equation is 7 H2O2 þ N2H4 ! 2 HNO3 þ 8 H2O The conversion is: (a) (b) (c) (d) 1000 g 1 mol 2 mol HNO3 63:02 g ð75 kg N2 H4 Þ ¼ 2:9 105 g HNO3 1 mol N2 H4 1 kg 32:05 g mol 1000 mL 1:41 g 1 mol 8 mol H2 O 18:02 g ð250 L H2 O2 Þ ¼ 2:1 105 g H2 O 1L 1 mL 34:02 g 7 mol H2 O2 mol 1 mol 1 mol N2 H4 32:02 g ð725 g H2 O2 Þ ¼ 97:6 g N2 H4 34:02 g 7 mol H2 O2 mol Reaction between 750 g of N2H2 and 125 g of H2O2. Convert each amount to grams of H2O. 1 mol 8 mol H2 O 18:02 g ð750 g N2 H4 Þ ¼ 3:4 103 g H2 O 32:05 g 1 mol N2 H4 mol 1 mol 8 mol H2 O 18:02 g ð125 g H2 O2 Þ ¼ 75:7 g H2 O 34:02 g 7 mol H2 O2 mol 75.7 g H2O can be produced. - 96 - - Chapter 9 (e) Since H2O2 is the limiting reactant, N2H4 is in excess. 1 mol 1 mol N2 H4 32:05 g ð125 g H 2O 2Þ ¼ 16:8 g N2 H4 reacted 34:02 g 7 mol H2 O2 mol 750 g N2H4 given 16.8 g N2 H4 used ¼ 730 g N2H4 remaining 40. The balanced equation is 16 HCl þ 2 KMnO4 ! 5 Cl2 þ 2 KCl þ 2 MnCl2 þ 8 H2O (a) (b) (c) (d) Reaction between 25 g KMnO4 and 85 g HCl. Convert each to moles of MnCl2. 1 mol KMnO4 2 mol MnCl2 ¼ 0:16 mol MnCl2 ð25 g KMnO4 Þ 158:04 g KMnO4 2 mol KMnO4 1 mol 2 mol MnCl2 ð85 g HClÞ ¼ 0:29 mol MnCl2 16 mol HCl 36:46 g KMnO4 is the limiting reactant; 0.16 mol MnCl2 produced. 1 mol 8 mol H2 O 18:02 g ð75 g KClÞ ¼ 73 g H2 O 74:55 g 2 mol KCl mol 1 mol 5 mol Cl2 70:90 g ð150 g HClÞ ¼ 91 g Cl2 36:46 g 16 mol HCl mol 75 g Theoretical yield is 91 g Cl2; Percent yield: ð100Þ ¼ 82% yield 91 g Reaction between 25 g HC1 and 25 g KMnO4. Convert each amount to grams of CL2. 1 mol 5 mol Cl2 70:90 g ¼ 15 g Cl2 ð25 g HClÞ 36:46 g 16 mol HCl mol 1 mol 5 mol Cl2 70:90 g ð25 g KMnO4 Þ ¼ 28 g Cl2 158:04 g 2 mol KMnO4 mol HC1 is the limiting; KMnO4 is in excess; 15 g Cl2 will be produced. (e) Calculate the mass of unreacted KMnO4: 1 mol 2 mol KMnO4 158:04 g ð25 g HClÞ ¼ 14 g KMnO4 will react. 16 mol HCl 36:46 g mol Unreacted KMnO4 ¼ 25 g 14 g ¼ 11 g KMnO4 remain unreacted. - 97 - - Chapter 9 41. The balanced equation is 4 Ag þ 2 H2S þ O2 ! 2 Ag2S þ 2 H2O 1 mol 2 mol Ag2 S 247:9 g ¼ 1:3 g Ag2 S (a) ð1:1 g AgÞ 107:09 g 4 mol Ag mol 1 mol 2 mol Ag2 S 247:9 g ð0:14 g H2 SÞ ¼ 1:0 g Ag2 S 34:09 g 2 mol H2 S mol 1 mol 2 mol Ag2 S 247:9 g ð0:080 g O2 Þ ¼ 1:2 g Ag2 S 32:00 g 1 mol O2 mol (b) H2S is limiting; 1.0 g Ag2S forms. 1 mol 2 mol H2 S 34:09 g ð1:1 g AgÞ ¼ 0:17 g H2 S reacts 107:9 g 4 mol Ag mol 0.17 g 0.14 g ¼ 0.03 grams more H2S needed to completely react Ag. 42. Equation: CaO þ H2O ! Ca(OH)2 1 mol 1 mol CaðOHÞ2 74:10 g ð35:55 g CaOÞ ¼ 46:97 g CaðOHÞ2 1 mol CaO 56:08 1 mol 43. (a) (b) CuðNO3 Þ2 ðaqÞ þ 2 NaOHðaqÞ ! CuðOHÞ2 ðsÞ þ 2 NaNO 3ðaqÞ 1 mol 1 mol CuðOHÞ2 97:57 g 15:25 g CuðNO3 Þ2 ¼ 7:931 g CuðOHÞ2 187:6 g 1 mol CuðNO3 Þ2 mol 1 mol 1 mol CuðOHÞ2 97:57 g ð12:75 g NaOHÞ ¼ 15:55 g CuðOHÞ2 2 mol NaOH 40:00 g mol The theoretical yield is 7.931 g Cu(OH)2 actual yield 5:23 g The percent yield ¼ ð100Þ ¼ ð100Þ ¼ 65:9 of yield of Cu(OH)2 theoretical yield 7:931 g 44. C2 H5 OH þ 3 O2 ! 2 CO2 þ 3 H2 O 2 mol CO2 ¼ 5:0 mol CO2 (a) ð2:5 mol C2 H5 OHÞ 1 mol C2 H5 OH 2 mol CO2 ¼ 5:0 mol CO2 ð7:5 mol O2 Þ 3 mol O2 Neither reactant is limiting. 3 mol H2 O ð2:5 mol C2 H5 OHÞ ¼ 7:5 mol H2 O 1 mol C2 H5 OH When the reaction is complete, there will be 5.0 mol CO2 and 7.5 mol H2O. - 98 - - Chapter 9 (b) 1 mol 2 mol CO2 44:01 g ð225 g C2 H5 OHÞ ¼ 430 g CO2 46:07 g 1 mol C2 H5 OH mol 1 mol 3 mol H2 O 18:02 g ð225 g C2 H5 OHÞ ¼ 264 g H2 O 46:07 g 1 mol C2 H5 OH mol 45. The balanced equation is Zn þ 2 HC1 ! ZnCl2 þ H2 180.0 g Zn 35 g Zn ¼ 145 g Zn reacted with HCl 1 mol 1 mol H2 2:016 g (a) ð145 g ZnÞ ¼ 4:47 g H2 produced 65:39 g 1 mol Zn mol 1 mol 2 mol HCl 36:46 g (b) ð145 g ZnÞ ¼ 162 g HCl reacted 65:39 g 1 mol Zn mol 1 mol 2 mol HCl 36:46 g (c) ð180:0 g ZnÞ ¼ 201 g HCl reacts 65:39 g 1 mol Zn mol 201 g 162 g ¼ 39 g more HCl needed to react with the 180.0 g Zn 46. FeðsÞ þ CuSO4 ðaqÞ ! CuðsÞ þ FeSO4 ðaqÞ 2:0 mol 3:0 mol (a) (b) 2.0 mol Fe react with 2.0 mol CuSO4 to yield 2.0 mol Cu and 2.0 mol FeSO4. 1.0 mol CuSO4 is unreacted. At the completion of the reaction, there will be 2.0 mol Cu, 2.0 mol FeSO4, and 1.0 mol CuSO4. Determine which reactant is limiting and then calculate the g FeSO4 produced from that reactant. 1 mol 1 mol Cu 63:55 g ð20:0 g FeÞ ¼ 22:8 g Cu 55:85 g 1 mol Fe mol 1 mol 1 mol Cu 63:55 g ð40:0 g CuSO4 Þ ¼ 15:9 g Cu 159:6 g 1 mol CuSO4 mol Since CuSO4 produces less Cu, it is the limiting reactant. Determine the mass of FeSO4. produced from 40.0 g CuSO4. 1 mol 1 mol FeSO4 151:9 g ¼ 38:1 g FeSO4 produced ð40:0 g CuSO4 Þ 159:6 g 1 mol FeSO4 mol Calculate the mass of unreacted Fe. 1 mol 1 mol Fe 55:85 g ð40:0 g CuSO4 Þ ¼ 14:0 g Fe will react 159:6 g 1 mol FeSO4 mol Unreacted Fe ¼ 20.0 g 14.0 g ¼ 6.0 g. Therefore, at the completion of the reaction, 15.9 g Cu, 38.1 g FeSO4, 6.0 g Fe, and no CuSO4 remain. - 99 - - Chapter 9 47. Limiting reactant calculation CO(g) þ 2 H2(g) ! CH3OH(l) Reaction between 40.0 g CO and 10.0 g H2: determine the limiting reactant by calculating the amount of CH3OH that would be formed from each reactant. 1 mol 1 mol CH3 OH 32:04 g ¼ 45:8 g CH3 OH 28:01 g 1 mol CO mol 1 mol 1 mol CH3 OH 32:04 g ð10:0 g H2 Þ ¼ 79:5 g CH3 OH 2:016 g 2 mol H2 mol ð40:0 g COÞ CO is limiting; H2 is in excess; 45.8 g CH3OH will be produced. Calculate the mass of unreacted H2: ð40:0 g COÞ 1 mol 28:01 g 2 mol H2 1 mol CO 2:016 g ¼ 5:76 g H2 react mol 10.0 g H2 5.76 g H2 ¼ 4.2g H2 remain unreacted 48. The balanced equation is C6H12O6 ! 2 C2H5OH þ 2 CO2 (a) First calculate the theoretical yield. 1 mol ð750 g C6 H12 O6 Þ 180:2 g 2 mol C2 H5 OH 1 mol C6 H12 O6 46:07 g mol ¼ 3:8 102 g C2 H5 OH ðtheoretical yieldÞ Then take 84.6% of the theoretical yield to obtain the actual yield. actual yield ¼ ðtheoretical yieldÞð84:6Þ ð3:8 102 g C2 H5 OHÞð84:6Þ ¼ 100 100 ¼ 3:2 102 g C2 H5 OH (b) 475 g C2H5OH represents 84.6% of the theoretical yield. Calculate the theoretical yield. theoretical yield ¼ 475 g ¼ 561 g C2 H5 OH 0:846 Now calculate the g C6H12O6 needed to produce 561 g C2H5OH. 1 mol 1 mol C6 H12 O6 180:2 g ð561 g C2 H5 OHÞ ¼ 1:10 103 g C6 H12 O6 46:07 g 2 mol C2 H5 OH mol 49. The balanced equations are: CaCl2(aq) þ 2 AgNO3(aq) ! Ca(NO3)2(aq) þ 2 AgCl(s) MgCl2(aq) þ 2 AgNO3(aq ) ! Mg(NO3)2(aq) þ 2 AgCl(s) - 100 - - Chapter 9 1 mol of each salt will produce the same amount (2 mol) of AgCl. MgCl2 has a higher percentage of Cl than CaCl2 because Mg has a lower atomic mass than Ca. Therefore, on an equal mass basis, MgCl2 will produce more AgCl than will CaCl2. Calculations show that 1.00 g MgCl2 produces 3.01 g AgCl, and 1.00 g CaCl2 produces 2.56 g AgCl. 50. The balanced equation is Li2O þ H2O ! 2 LiOH The conversion is: g H2O ! mol H2O ! mol Li2O ! g Li2O ! kg Li2O 2500 g H2 O 1 mol 1 mol Li2 O 29:88 g 1 kg 4:1 kg Li2 O ¼ astronaut day 18:02 g 1 mol H2 O mol 1000 g astronaut day 4:1 kg Li2 O ð30 daysÞð3 astronautsÞ ¼ 3:7 102 kg Li2 O astronaut day 51. The balanced equation is H2SO4 þ 2 NaCl ! Na2SO4 þ 2 HCl First calculate the g HCl to be produced 1000 mL 1:20 g ð20:0 L HCl solutionÞ ð0:420Þ ¼ 1:01 104 g HCl 1L 1:00 mL Then calculate the g H2SO4 required to produce the HCl 1 mol ð1:01 10 g HClÞ 36:46 g 4 1 mol H2 SO4 2 mol HCl ¼ 1:36 104 g H2 SO4 Finally, calculate the kg H2SO4 (96%) 1:00 g H2 SO4 solution 1 kg ð1:36 10 g H2 SO4 Þ ¼ 14 kg concentrated H2 SO4 0:96 g H2 SO4 1000 g 4 52. Percent yield of H2SO4 1 mol ð100:0 g SÞ ¼ 3:118 mol S to start with 32:07 g 3.118 mol S ! 3.118 mol SO2 10% ¼ 2.806 mol SO2 0:3118 2:8062 2.806 mol SO2 ! 2.806 mol SO3 10% ¼ 2.525 mol SO3 0:2806 2:5254 - 101 - - Chapter 9 2.525 mol SO3 ! 2.525 mol H2SO4 10% ¼ 2.273 mol H2SO4 0:2525 2:2725 98:09 g ð2:273 mol H2 SO4 Þ ¼ 223:0 g H2 SO4 formed mol 1 mol H2 SO4 ð3:118 mol SÞ ¼ 3:118 mol H2 SO4 ðtheoretical yieldÞ 1 mol S 2:273 mol H2 SO4 ð100Þ ¼ 72:90% yield 3:118 mol H2 SO4 Alternate Solution: Calculation of yield. There are three chemical steps to the formation of H2SO4. Each step has a 10% loss of yield. Step 1: Step 2: Step 3: 100% yield 10% ¼ 90.00% yield 90.00% yield 10% ¼ 81.00% yield 81.00% yield 10% ¼ 72.90% yield Now calculate the grams of product. One mole of sulfur will yield a maximum of 1 mol H2SO4. Therefore 3.118 mol S will give a maximum of 3.118 mol H2SO4. 1 mol H2 SO4 98:09 g ð3:118 mol SÞ ð0:7290Þ ¼ 223:0 g H2 SO4 yield 1 mol S mol 53. According to the equations, the moles of CO2 come from both reactions and the moles H2O come from only the first reaction. So the mol NaHCO3 ¼ 2 mol H2O ¼ 2 0.0357 mol ¼ 0.0714 mol NaHCO3 84:01 g ð0:0714 mol NaHCO3 Þ ¼ 6:00 g NaHCO3 in the sample mol (10.00 g NaHCO3 þ Na2CO3) 6.00 g NaHCO3 ¼ 4.00 g Na2CO3 in the sample 6:00 g NaHCO3 ð100Þ ¼ 60:0% NaHCO3 10:00 g 4:00 g Na2 CO3 ð100Þ ¼ 40:0% Na2 CO3 10:00 g 54. (a) Hydrogen Carbon Oxygen There is no limiting reactant = CH4 = O2 = H2O = CO2 - 102 - - Chapter 9 55. The balanced equation is 2 KClO3 ! KCl3 þ 3 O2 12.82 g mixture 9.45 g residue ¼ 3.37 g O2 lost by heating Because the O2 lost came only from KClO3, we can use it to calculate the amount of KClO3 in the mixture The conversion is: g O2 ! mol O2 ! mol KClO3 ! g KClO3 1 mol 1 mol KClO3 122:6 g ð3:37 g O2 Þ ¼ 8:61 g KClO3 in the mixture 3 mol O2 32:00 mol mol 8:61 g KClO3 ð100Þ ¼ 67:2% KClO3 12:82 g sample 56. The balanced equation is Al(OH)3(s) þ 3 HCl(aq) ! AlCl3(aq) þ 3 H2O(l) The conversion is: L HC1 ! g HCl ! mol HCl ! mol A1(OH)3 ! g A1(OH)3 2:5 L day 3:0 g HCl L 1 mol 1 mol AlðOHÞ3 78:00 g ¼ 5:3 g AlðOHÞ3 =day 3 mol HCl 36:46 g mol Now calculate the number of 400. mg tablets that can be made from 5.3 g A1(OH)3 5:3 g AlðOHÞ3 day 1000 mg g 1 tablet ¼ 13 tablets=day 400: mg 57. 4 P þ 5 O2 ! P4O10 P4O10 þ 6 H2O ! 4 H3PO4 In the first reaction: 1 mol ð20:0 g PÞ ¼ 0:646 mol P 30:97 g 1 mol ð30:0 g O2 Þ ¼ 0:938 mol O2 32:00 g This is a ratio of 0:646 mol P 3:44 mol P ¼ 0:938 mol O2 5:00 mol O2 Therefore, P is the limiting reactant and the P4O10 produced is: 1 mol P4 O10 ð0:646 mol PÞ ¼ 0:162 mol P4 O10 4 mol P - 103 - - Chapter 9 In the second reaction: 1 mol ð15:0 g H2 OÞ ¼ 0:832 mol H2 O 18:02 g and we have 0.162 mol P4O10. The ratio of H2 O 0:832 mol 5:14 mol is ¼ P4 O10 0:162 mol 1:00 mol Therefore, H2O is the limiting reactant and the H3PO4 produced is: 4 mol H3 PO4 97:99 g ð0:832 mol H2 OÞ ¼ 54:4 g H3 PO4 6 mol H2 O2 mol - 104 -