Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Transcript

Real world Problems There are examples of finding the cost of flooring using proportional relationships and given information. There are questions like using proportions to modify a recipe to create a different number of servings. The next unit is about percentages and will go in depth with percentage problems. In this unit we will âplant the seedâ on discounts, markups and changes based on fractions. This will then tie into the percentages for the next unit. Scale Drawings Scale drawings are reductions or enlargements of a two-dimensional picture. The dimensions from the original to the scale drawing are proportional and have a scale factor. The scale factor is a constant of proportionality. Scale Drawings When the units are the same: The scale factor is the same as the constant of proportionality. ððð¤ = ð ðððð ðððð¡ðð ðððððððð When the scale factor is greater than one, it is an enlargement. When the scale factor is less than one, it is a reduction When the units are different: The scale is a ratio. i.e. 1 in. = 4 ft. You set up proportions to find the missing length. For example: 2 Â½ in = _____ft. 1 2 2 ðð ð¥ ðð¡ = 1ðð 4ðð¡ Method 1: You multiply 1 x 2 Â½ to get 2 1/2 , so multiply 4 x 2 Â½ to get 10ft. Method 2: Use cross products (multiplication) to get the answer. 1 2 2 ð¥ = 1 4 1(x) = 2 Â½ (4) X = 10