Download 1 or x - TeacherWeb

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
UNIT 1A
LESSON 6B
Quadratic and Polynomial
Inequalities
1
INTERVALS & INEQUALITIES
Interval
Notation
Inequality
Notation
Graph
2
Solving Quadratic Inequalities by Graphing
𝑦 = π‘₯ 2 βˆ’ 6π‘₯ + 5
π‘₯ 2 βˆ’ 6π‘₯ + 5 > 𝟎
𝒙|𝒙 < 𝟏 𝒐𝒓 𝒙 > πŸ“
π‘₯ 2 βˆ’ 6π‘₯ + 5 β‰₯ 𝟎
𝒙|𝒙 ≀ 𝟏 𝒐𝒓 𝒙 β‰₯ πŸ“, 𝒙 ∈ 𝑹
π‘₯ 2 βˆ’ 6π‘₯ + 5 < 𝟎
𝒙|𝟏 < 𝒙 < πŸ“, 𝒙 ∈ 𝑹
π‘₯ 2 βˆ’ 6π‘₯ + 5 ≀ 𝟎
𝒙|𝟏 ≀ 𝒙 ≀ πŸ“, 𝒙 ∈ 𝑹
3
SOLVING POLYNOMIAL INEQUALITIES
In order to solve any polynomial equation or inequality you must FACTOR first!!!
x2 – 6x + 5 = 0
Let’s use
our heads
(x – 1 )(x – 5) = 0
x = 1or x = 5
If x < 1
If x > 5
If x is between 1 and 5
( πŸ’ – 1 )( πŸ’ – 5) is ( πŸ” – 1 )( πŸ” – 5) is
( 𝟎 – 1 )( 𝟎 – 5) is
positive
negative
+
βˆ’
1
positive
+
5
4
SOLVING POLYNOMIAL INEQUALITIES
In order to solve any polynomial equation or inequality you must FACTOR first!!!
+
+
1
5
x2 – 6x +5 > 0
x2 – 6x +5 > 0
(x – 1 )(x – 5) > 0
(x – 1 )(x – 5) > 0
x < 1 or x > 5
x < 1 or x > 5
(βˆ’βˆž, 𝟏) βˆͺ (πŸ“, ∞)
βˆ’βˆž, 𝟏 βˆͺ [πŸ“, ∞)
5
SOLVING POLYNOMIAL INEQUALITIES
In order to solve any polynomial equation or inequality you must FACTOR first!!!
βˆ’
1
5
x2 – 6x +5 < 0
x2 – 6x +5 < 0
(x – 1 )(x – 5) < 0
(x – 1 )(x – 5) < 0
1<x<5
1<x<5
(𝟏, πŸ“)
[𝟏, πŸ“]
6
Do Questions 1- 4 on pages 2 and 3
on your own
7
Special Cases
π’š = π’™πŸ + πŸ”π’™ + πŸ—
π’™πŸ + πŸ”π’™ + πŸ— > 𝟎
𝒙|𝒙 β‰  βˆ’πŸ‘, 𝒙 ∈ 𝑹
π’™πŸ + πŸ”π’™ + πŸ— β‰₯ 𝟎
𝒙|𝒙 ∈ 𝑹
π’™πŸ + πŸ”π’™ + πŸ— < 𝟎
𝒏𝒐 π’”π’π’π’–π’•π’Šπ’π’
π’™πŸ + πŸ”π’™ + πŸ— ≀ 𝟎
𝒙|𝒙 = βˆ’πŸ‘
8
𝐒𝐨π₯𝐯𝐞 𝐛𝐲 𝐟𝐚𝐜𝐭𝐨𝐫𝐒𝐧𝐠
π’™πŸ + πŸ”π’™ + πŸ— = 𝟎
𝒙+πŸ‘
𝟐
βˆ’πŸ‘
=𝟎
𝒙 = βˆ’πŸ‘
If π‘₯ < βˆ’3
βˆ’πŸ’ + πŸ‘
If π‘₯ > βˆ’3
𝟐
is
𝟎+πŸ‘
positive
π’™πŸ + πŸ”π’™ + πŸ— > 𝟎
𝒙 β‰  βˆ’πŸ‘
π’™πŸ + πŸ”π’™ + πŸ— < 𝟎
𝒏𝒐 π’”π’π’π’–π’•π’Šπ’π’
𝟐
is
positive
π’™πŸ + πŸ”π’™ + πŸ— β‰₯ 𝟎
π’™βˆˆπ‘Ή
π’™πŸ + πŸ”π’™ + πŸ— ≀ 𝟎
𝒙 = βˆ’πŸ‘
9
Do Questions 1- 4 on page 5
on your own
10
Higher Order Polynomials
π’š = π’™πŸ‘ + πŸπ’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ”
π’™πŸ‘ + πŸπ’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ” > 𝟎
𝒙| βˆ’ πŸ‘ < 𝒙 < βˆ’πŸ 𝒐𝒓 𝒙 > 𝟐, 𝒙 ∈ 𝑹
π’™πŸ‘ + πŸπ’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ” β‰₯ 𝟎
𝒙| βˆ’ πŸ‘ ≀ 𝒙 ≀ βˆ’πŸ 𝒐𝒓 𝒙 β‰₯ 𝟐, 𝒙 ∈ 𝑹
π’™πŸ‘ + πŸπ’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ” < 𝟎
𝒙|𝒙 < βˆ’πŸ‘ 𝒐𝒓 βˆ’ 𝟏 < 𝒙 < 𝟐, 𝒙 ∈ 𝑹
π’™πŸ‘ + πŸπ’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ” ≀ 𝟎
𝒙|𝒙 ≀ βˆ’πŸ‘ 𝒐𝒓 βˆ’ 𝟏 ≀ 𝒙 ≀ 𝟐, 𝒙 ∈ 𝑹
11
Factor x3 + 2x2 – 5x – 6
Test potential zeros ±1, ±2, ±3, ±6.
23 + 2(2)2 – 5(2) – 6 = 8 + 8 – 10 – 6 = 0
(x – 2) is a factor
Addition Method
Subtraction Method
-2 1
2
-2
1 4
-5
-8
3
-6
-6
0
2 1
1
2
2
4
-5
8
3
-6
6
0
x3 + 2x2 – 5x – 6 = (x – 2)(1x2 + 4x + 3)
= (x – 2)(x + 3)(x + 1)
12
EXAMPLE continued
x3 + 2x2 – 5x – 6
x3 + 2x2 – 5x – 6 = (x – 2)(x + 3)(x + 1)
βˆ’
+
–3
+
βˆ’
–1
2
If x < – 3
( βˆ’πŸ’ – 2)( βˆ’πŸ’ + 3)( βˆ’πŸ’ + 1) is
neg
If – 3 < x < – 1
( βˆ’πŸ – 2)( βˆ’πŸ + 3)( βˆ’πŸ + 1) is
pos
If – 1 < x < 2
( 𝟎 – 2)( 𝟎
+ 3)( 𝟎
+ 1) is
neg
If x > 2
( πŸ“ – 2)( πŸ“
+ 3)( πŸ“ + 1) is
pos
13
x3 6+ 2x2 – 5xx–3 6+ 2x2 – 5x – 6
EXAMPLE
x3 + 2x2 – 5x – 6 = (x – 2)(x + 3)(x + 1)
neg
pos
–3
pos
neg
–1
2
x3 + 2x2 – 5x – 6 > 0
x3 + 2x2 – 5x – 6 < 0
–3 < x < –1 or x > 2
x < –3 or –1 < x < 2
x3 + 2x2 – 5x – 6 > 0
x3 + 2x2 – 5x – 6 < 0
–3 < x < –1 or x > 2
x < –3 or –1 < x < 2
14
Do Questions 1- 4 on page 7
on your own
15
Special Cases of Cubics
16
Higher Order Polynomials
π’š = π’™πŸ‘ + π’™πŸ βˆ’ πŸ“π’™ + πŸ‘
π’™πŸ‘ + π’™πŸ βˆ’ πŸ“π’™ + πŸ‘ > 𝟎
𝒙|𝒙 > βˆ’πŸ‘, 𝒙 β‰  πŸπ’™ ∈ 𝑹
π’™πŸ‘ + π’™πŸ βˆ’ πŸ“π’™ + πŸ‘ β‰₯ 𝟎
𝒙|𝒙 β‰₯ βˆ’πŸ‘, 𝒙 ∈ 𝑹
π’™πŸ‘ + π’™πŸ βˆ’ πŸ“π’™ + πŸ‘ < 𝟎
𝒙|𝒙 < βˆ’πŸ‘ 𝒙 ∈ 𝑹
π’™πŸ‘ + π’™πŸ βˆ’ πŸ“π’™ + πŸ‘ ≀ 𝟎
𝒙|𝒙 ≀ βˆ’πŸ‘ , 𝒙 = 𝟏, 𝒙 ∈ 𝑹
17
Factor x3 + x2 – 5x +3
Test potential zeros ±1, ±2, ±3.
13 + (1)2 – 5(1) + 3 = 1 + 1 – 5 + 3 = 0
(x – 1) is a factor
Addition Method
Subtraction Method
-1 1
1
-1
1 2
-5
-2
-3
3
3
0
1 1
1
1
1
2
-5 3
2 -3
-3
0
x3 + 2x2 – 5x – 6 = (x – 1)(1x2 + 2x – 3)
= (x – 1)(x + 3)(x – 1) = π‘₯ βˆ’ 1 2 (x + 3)
18
EXAMPLE continued
x3 + x2 – 5x +3
= π‘₯ βˆ’ 1 2 (x + 3)
x3 + x2 – 5x +3
+
βˆ’
–3
+
1
If x < – 3
( βˆ’πŸ’ – 1)2( βˆ’πŸ’ + 3) is
neg
If – 3 < x < 1
( βˆ’πŸ – 1)2( βˆ’πŸ + 3) is
pos
If x > 1
( πŸ“ – 1)2( πŸ“ + 3) is
pos
19
EXAMPLE continued
= π‘₯ βˆ’ 1 2 (x + 3)
x3 + x2 – 5x +3
+
βˆ’
–3
x3 + x2 – 5x + 3 > 0
𝒙 > βˆ’πŸ‘, 𝒙 β‰  𝟏
x3 + x2 – 5x + 3 > 0
𝒙 β‰₯ βˆ’πŸ‘
x3 + x2 – 5x +3
+
1
x3 + x2 – 5x + 3 < 0
x < –3
x3 + x2 – 5x + 3 < 0
𝒙 ≀– πŸ‘, 𝒙 = 𝟏
20
Higher Order Polynomials
π’š = π’™πŸ‘ + π’™πŸ + πŸπ’™ + 𝟐
π’™πŸ‘ + π’™πŸ + πŸπ’™ + 𝟐 > 𝟎
𝒙|𝒙 > βˆ’πŸ, 𝒙 ∈ 𝑹
π’™πŸ‘ + π’™πŸ + πŸπ’™ + 𝟐 β‰₯ 𝟎
𝒙|𝒙 β‰₯ βˆ’πŸ, 𝒙 ∈ 𝑹
π’™πŸ‘ + π’™πŸ + πŸπ’™ + 𝟐 < 𝟎
𝒙|𝒙 < βˆ’πŸ 𝒙 ∈ 𝑹
π’™πŸ‘ + π’™πŸ + πŸπ’™ + 𝟐 ≀ 𝟎
𝒙|𝒙 ≀ βˆ’πŸ, 𝒙 ∈ 𝑹
21
Factor x3 + x2 + 2x + 2
Test potential zeros ±1, ±2.
(–1)3 + (–1)2 + 2(–1) + 2 = – 1 + 1 – 2 + 2 = 0
(x + 1) is a factor
Addition Method
Subtraction Method
1 1
1
1 2
1 0
0 2
2
2
0
–11
1
–1
1 0
2 2
0 –2
2
0
x3 + x2 + 2x + 2 = (x + 1)(1x2 + 2)
= (x + 1)(x2 + 2)
22
x3 + x2 + 2x +2
EXAMPLE continued
x3 + x2 + 2x + 2
= (x + 1)(x2 + 2)
βˆ’
+
–1
If x < – 1
If x > – 1
( βˆ’πŸ’ + 1)( βˆ’πŸ’ 𝟐 + 2) is
( πŸ’ + 1)( πŸ’
𝟐
+ 2) is
neg
pos
23
EXAMPLE continued
x3 + x2 + 2x + 2
x3 + x2 + 2x + 2
= (x + 1)(x2 + 2)
βˆ’
+
–1
x3 + x2 + 2x + 2 > 0
x3 + x2 + 2x + 2 < 0
𝒙 > βˆ’πŸ
𝒙 < βˆ’πŸ
x3
+
x2
+ 2x + 2 > 0
𝒙 β‰₯ βˆ’πŸ
x3 + x2 + 2x + 2 < 0
𝒙 ≀ βˆ’πŸ
24
Do Questions 1- 4 on page 10
on your own
25
Related documents