Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
UNIT 1A LESSON 6B Quadratic and Polynomial Inequalities 1 INTERVALS & INEQUALITIES Interval Notation Inequality Notation Graph 2 Solving Quadratic Inequalities by Graphing π¦ = π₯ 2 β 6π₯ + 5 π₯ 2 β 6π₯ + 5 > π π|π < π ππ π > π π₯ 2 β 6π₯ + 5 β₯ π π|π β€ π ππ π β₯ π, π β πΉ π₯ 2 β 6π₯ + 5 < π π|π < π < π, π β πΉ π₯ 2 β 6π₯ + 5 β€ π π|π β€ π β€ π, π β πΉ 3 SOLVING POLYNOMIAL INEQUALITIES In order to solve any polynomial equation or inequality you must FACTOR first!!! x2 β 6x + 5 = 0 Letβs use our heads (x β 1 )(x β 5) = 0 x = 1or x = 5 If x < 1 If x > 5 If x is between 1 and 5 ( π β 1 )( π β 5) is ( π β 1 )( π β 5) is ( π β 1 )( π β 5) is positive negative + β 1 positive + 5 4 SOLVING POLYNOMIAL INEQUALITIES In order to solve any polynomial equation or inequality you must FACTOR first!!! + + 1 5 x2 β 6x +5 > 0 x2 β 6x +5 > 0 (x β 1 )(x β 5) > 0 (x β 1 )(x β 5) > 0 x < 1 or x > 5 x < 1 or x > 5 (ββ, π) βͺ (π, β) ββ, π βͺ [π, β) 5 SOLVING POLYNOMIAL INEQUALITIES In order to solve any polynomial equation or inequality you must FACTOR first!!! β 1 5 x2 β 6x +5 < 0 x2 β 6x +5 < 0 (x β 1 )(x β 5) < 0 (x β 1 )(x β 5) < 0 1<x<5 1<x<5 (π, π) [π, π] 6 Do Questions 1- 4 on pages 2 and 3 on your own 7 Special Cases π = ππ + ππ + π ππ + ππ + π > π π|π β βπ, π β πΉ ππ + ππ + π β₯ π π|π β πΉ ππ + ππ + π < π ππ ππππππππ ππ + ππ + π β€ π π|π = βπ 8 ππ¨π₯π―π ππ² πππππ¨π«π’π§π ππ + ππ + π = π π+π π βπ =π π = βπ If π₯ < β3 βπ + π If π₯ > β3 π is π+π positive ππ + ππ + π > π π β βπ ππ + ππ + π < π ππ ππππππππ π is positive ππ + ππ + π β₯ π πβπΉ ππ + ππ + π β€ π π = βπ 9 Do Questions 1- 4 on page 5 on your own 10 Higher Order Polynomials π = ππ + πππ β ππ β π ππ + πππ β ππ β π > π π| β π < π < βπ ππ π > π, π β πΉ ππ + πππ β ππ β π β₯ π π| β π β€ π β€ βπ ππ π β₯ π, π β πΉ ππ + πππ β ππ β π < π π|π < βπ ππ β π < π < π, π β πΉ ππ + πππ β ππ β π β€ π π|π β€ βπ ππ β π β€ π β€ π, π β πΉ 11 Factor x3 + 2x2 β 5x β 6 Test potential zeros ±1, ±2, ±3, ±6. 23 + 2(2)2 β 5(2) β 6 = 8 + 8 β 10 β 6 = 0 (x β 2) is a factor Addition Method Subtraction Method -2 1 2 -2 1 4 -5 -8 3 -6 -6 0 2 1 1 2 2 4 -5 8 3 -6 6 0 x3 + 2x2 β 5x β 6 = (x β 2)(1x2 + 4x + 3) = (x β 2)(x + 3)(x + 1) 12 EXAMPLE continued x3 + 2x2 β 5x β 6 x3 + 2x2 β 5x β 6 = (x β 2)(x + 3)(x + 1) β + β3 + β β1 2 If x < β 3 ( βπ β 2)( βπ + 3)( βπ + 1) is neg If β 3 < x < β 1 ( βπ β 2)( βπ + 3)( βπ + 1) is pos If β 1 < x < 2 ( π β 2)( π + 3)( π + 1) is neg If x > 2 ( π β 2)( π + 3)( π + 1) is pos 13 x3 6+ 2x2 β 5xxβ3 6+ 2x2 β 5x β 6 EXAMPLE x3 + 2x2 β 5x β 6 = (x β 2)(x + 3)(x + 1) neg pos β3 pos neg β1 2 x3 + 2x2 β 5x β 6 > 0 x3 + 2x2 β 5x β 6 < 0 β3 < x < β1 or x > 2 x < β3 or β1 < x < 2 x3 + 2x2 β 5x β 6 > 0 x3 + 2x2 β 5x β 6 < 0 β3 < x < β1 or x > 2 x < β3 or β1 < x < 2 14 Do Questions 1- 4 on page 7 on your own 15 Special Cases of Cubics 16 Higher Order Polynomials π = ππ + ππ β ππ + π ππ + ππ β ππ + π > π π|π > βπ, π β ππ β πΉ ππ + ππ β ππ + π β₯ π π|π β₯ βπ, π β πΉ ππ + ππ β ππ + π < π π|π < βπ π β πΉ ππ + ππ β ππ + π β€ π π|π β€ βπ , π = π, π β πΉ 17 Factor x3 + x2 β 5x +3 Test potential zeros ±1, ±2, ±3. 13 + (1)2 β 5(1) + 3 = 1 + 1 β 5 + 3 = 0 (x β 1) is a factor Addition Method Subtraction Method -1 1 1 -1 1 2 -5 -2 -3 3 3 0 1 1 1 1 1 2 -5 3 2 -3 -3 0 x3 + 2x2 β 5x β 6 = (x β 1)(1x2 + 2x β 3) = (x β 1)(x + 3)(x β 1) = π₯ β 1 2 (x + 3) 18 EXAMPLE continued x3 + x2 β 5x +3 = π₯ β 1 2 (x + 3) x3 + x2 β 5x +3 + β β3 + 1 If x < β 3 ( βπ β 1)2( βπ + 3) is neg If β 3 < x < 1 ( βπ β 1)2( βπ + 3) is pos If x > 1 ( π β 1)2( π + 3) is pos 19 EXAMPLE continued = π₯ β 1 2 (x + 3) x3 + x2 β 5x +3 + β β3 x3 + x2 β 5x + 3 > 0 π > βπ, π β π x3 + x2 β 5x + 3 > 0 π β₯ βπ x3 + x2 β 5x +3 + 1 x3 + x2 β 5x + 3 < 0 x < β3 x3 + x2 β 5x + 3 < 0 π β€β π, π = π 20 Higher Order Polynomials π = ππ + ππ + ππ + π ππ + ππ + ππ + π > π π|π > βπ, π β πΉ ππ + ππ + ππ + π β₯ π π|π β₯ βπ, π β πΉ ππ + ππ + ππ + π < π π|π < βπ π β πΉ ππ + ππ + ππ + π β€ π π|π β€ βπ, π β πΉ 21 Factor x3 + x2 + 2x + 2 Test potential zeros ±1, ±2. (β1)3 + (β1)2 + 2(β1) + 2 = β 1 + 1 β 2 + 2 = 0 (x + 1) is a factor Addition Method Subtraction Method 1 1 1 1 2 1 0 0 2 2 2 0 β11 1 β1 1 0 2 2 0 β2 2 0 x3 + x2 + 2x + 2 = (x + 1)(1x2 + 2) = (x + 1)(x2 + 2) 22 x3 + x2 + 2x +2 EXAMPLE continued x3 + x2 + 2x + 2 = (x + 1)(x2 + 2) β + β1 If x < β 1 If x > β 1 ( βπ + 1)( βπ π + 2) is ( π + 1)( π π + 2) is neg pos 23 EXAMPLE continued x3 + x2 + 2x + 2 x3 + x2 + 2x + 2 = (x + 1)(x2 + 2) β + β1 x3 + x2 + 2x + 2 > 0 x3 + x2 + 2x + 2 < 0 π > βπ π < βπ x3 + x2 + 2x + 2 > 0 π β₯ βπ x3 + x2 + 2x + 2 < 0 π β€ βπ 24 Do Questions 1- 4 on page 10 on your own 25