Download Solving Equations with Substitution Examples

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1.5 – Applications of Quadratic Equations
Finding Numbers
Find two consecutive positive even numbers whose product is 168.
1𝑠𝑑 π‘›π‘’π‘šπ‘π‘’π‘Ÿ: π‘₯
2𝑛𝑑 π‘›π‘’π‘šπ‘π‘’π‘Ÿ: π‘₯ + 2
π‘₯ = βˆ’14, 12
π‘₯ π‘₯ + 2 = 168
π‘₯ 2 + 2π‘₯ = 168
π‘₯ 2 + 2π‘₯ βˆ’ 168 = 0
π‘₯=
βˆ’ 2 ±
2
2
βˆ’ 4 βˆ™ 1 βˆ™ βˆ’168
2βˆ™1
βˆ’2 ± 4 + 672
βˆ’2 ± 676
π‘₯=
=
2
2
βˆ’2 ± 26
βˆ’28 24
π‘₯=
π‘₯=
,
2
2 2
1𝑠𝑑 π‘›π‘’π‘šπ‘π‘’π‘Ÿ: 12
2𝑛𝑑 π‘›π‘’π‘šπ‘π‘’π‘Ÿ: 14
1.5 – Applications of Quadratic Equations
Area and Volume
A rectangular field is to be enclosed by fence and then divided into two
by another fence parallel to one of the sides. The area of the field must be
2400 square feet. If there are 240 feet of fencing available, find the
values of x and y.
π‘₯ βˆ’ 30 = 0
x
x
2400 = 2π‘₯𝑦
π‘₯ = 30 𝑓𝑑.
y
y
y
240 βˆ’ 4π‘₯
2400 = 2π‘₯
3
x
x
240 βˆ’ 4π‘₯
𝑦=
7200
=
2π‘₯
240
βˆ’
4π‘₯
𝑦
3
𝐴 = 2π‘₯ βˆ™
2400 = 2π‘₯𝑦
7200 = 480π‘₯ βˆ’ 8π‘₯ 2
4π‘₯ +3𝑦 = 240
3𝑦 = 240 βˆ’ 4π‘₯
240 βˆ’ 4π‘₯
𝑦=
3
8π‘₯ 2 βˆ’ 480π‘₯ + 7200 = 0
240 βˆ’ 4 βˆ™ 30
𝑦=
3
8 π‘₯ 2 βˆ’ 60π‘₯ + 900 = 0
𝑦 = 40 𝑓𝑑.
8 π‘₯ βˆ’ 30 π‘₯ βˆ’ 30 = 0
1.5 – Applications of Quadratic Equations
Vertical Motion
A rocket is launched from a hill 80 feet above a lake. The rocket will fall
into lake after exploding at its maximum height. The rocket’s height at
any time (t in seconds) above the surface of the lake is given by: β„Ž =
βˆ’ 16𝑑 2 + 64𝑑 + 80. (a) What is the height of the rocket after 1.5
second? (b) How long will it take for the rocket to hit 128 feet? (c)
After how many seconds after it is launched will the rocket hit the lake?
𝑑 = 1 𝑒𝑝 π‘Žπ‘›π‘‘ 3 (π‘‘π‘œπ‘€π‘›) 𝑠𝑒𝑐.
(a) β„Ž = βˆ’16𝑑 2 + 64𝑑 + 80
β„Ž = βˆ’16 1.5
2
+ 64 1.5 + 80
β„Ž = 140 𝑓𝑑.
(b) 128 = βˆ’16𝑑 2 + 64𝑑 + 80
16𝑑 2 βˆ’ 64𝑑 + 48 = 0
16 𝑑 2 βˆ’ 4𝑑 + 3 = 0
16 𝑑 βˆ’ 3 𝑑 βˆ’ 1 = 0
(c) 0 = βˆ’16𝑑 2 + 64𝑑 + 80
0 = βˆ’16 𝑑 2 βˆ’ 4𝑑 βˆ’ 5
βˆ’16 𝑑 + 1 𝑑 βˆ’ 5 = 0
𝑑 = βˆ’1 π‘Žπ‘›π‘‘ 5 𝑠𝑒𝑐.
𝑑 = 5 𝑠𝑒𝑐.
1.6 – More Equations and Applications
Solving Equations by Grouping
Examples:
6π‘₯ 2 + 3π‘₯ + 20π‘₯ + 10 = 0
5𝑣 3 βˆ’ 2𝑣 2 + 25𝑣 βˆ’ 10 = 0
3π‘₯ 2π‘₯ + 1 +10 2π‘₯ + 1 = 0
𝑣 2 5𝑣 βˆ’ 2 +5 5𝑣 βˆ’ 2 = 0
2π‘₯ + 1 3π‘₯ + 10 = 0
2π‘₯ + 1 = 0
1
π‘₯=βˆ’
2
3π‘₯ + 10 = 0
10
π‘₯=βˆ’
3
5𝑣 βˆ’ 2 𝑣 2 + 5 = 0
5𝑣 βˆ’ 2 = 0
2
𝑣=
5
𝑣2 + 5 = 0
𝑣 2 = βˆ’5
𝑣 2 = ± βˆ’5
𝑣 = ±π‘– 5
1.6 – More Equations and Applications
Solving Rational Equations
Examples:
5π‘₯
11π‘₯ + 1
12
= 2
βˆ’
π‘₯ + 2 π‘₯ + 7π‘₯ + 10 π‘₯ + 5
5π‘₯
11π‘₯ + 1
12
=
βˆ’
π‘₯+2
π‘₯+2 π‘₯+5
π‘₯+5
5π‘₯ 2 + 26π‘₯ + 23 = 0
π‘₯=
LCD: π‘₯ + 2 π‘₯ + 5
π‘₯+2 π‘₯+5
5π‘₯
11π‘₯ + 1
12
=
βˆ’
π‘₯+2
π‘₯+2 π‘₯+5
π‘₯+5
5π‘₯ π‘₯ + 5 = 11π‘₯ + 1 βˆ’ 12 π‘₯ + 2
5π‘₯ 2 + 25π‘₯ = 11π‘₯ + 1 βˆ’ 12π‘₯ βˆ’ 24
5π‘₯ 2 + 25π‘₯ = βˆ’π‘₯ βˆ’ 23
βˆ’26 ±
26 2 βˆ’ 4 5 23
2 5
βˆ’26 ± 216
π‘₯=
10
βˆ’26 ± 36 βˆ™ 6
π‘₯=
10
βˆ’13 ± 3 6
π‘₯=
5
1.6 – More Equations and Applications
Solving Radical Equations
Examples:
π‘₯+3βˆ’1=7
π‘₯+3=8
π‘₯+3
2
= 8
π‘₯ + 3 = 64
π‘₯ = 61
2
5x ο€­ 1 ο€­ x  2 ο€½ 3
16 x 2 ο€­ 16 x  4 ο€½ 4 x
5x ο€­ 1 ο€½ x  1
16 x 2 ο€­ 20 x  4 ο€½ 0
 5 x ο€­ 1 ο€½ 
2

x 1
2
5x ο€­ 1 ο€½ x  x  x  1
5x ο€­ 1 ο€½ x  2 x  1
4x ο€­ 2 ο€½ 2 x
4 x ο€­ 2
2
 
ο€½ 2 x
2
44 x 2 ο€­ 5 x  1 ο€½ 0
4x ο€­ 14x ο€­ 1 ο€½ 0
x ο€­ 1ο€½ 0 4x ο€­ 1 ο€½ 0
1
xο€½
x ο€½1
4
1.6 – More Equations and Applications
Solving Equations with Fractional Exponents
Examples:
𝑝
𝑝
3
3
2
2
2
3
= 11
𝑝 = 11
𝑝=
𝑝=
𝑝
= 11
3
3
2
3
112
121
2
3
𝑝
4
4
3
3
3
4
= 11
= 11
𝑝 = 11
3
3
4
4
𝑝 = ± 113
4
𝑝 = ± 1331
4
1.6 – More Equations and Applications
Solving Equations with Substitution
Examples:
π‘₯ 4 βˆ’ 7π‘₯ 2 + 12 = 0
𝑙𝑒𝑑 𝑒 = π‘₯ 2
π‘‘β„Žπ‘’π‘› 𝑒2 = π‘₯ 2
2
π‘₯ 2 = 3, 4
= π‘₯4
Substitute
𝑒2 βˆ’ 7𝑒 + 12 = 0
π‘’βˆ’3 π‘’βˆ’4 =0
π‘’βˆ’3=0 π‘’βˆ’4=0
𝑒 = 3, 4
𝑒 = π‘₯2
π‘₯2 = 3
π‘₯2 = 4
π‘₯=± 3
π‘₯=± 4
π‘₯ = ±2
1.6 – More Equations and Applications
Solving Equations with Substitution
Examples:
π‘₯
2
3
βˆ’ 2π‘₯
1
3
𝑙𝑒𝑑 𝑒 = π‘₯
π‘‘β„Žπ‘’π‘›
𝑒2
= π‘₯
1
𝑒=π‘₯
βˆ’ 15 = 0
1
π‘₯
3
2
3
=π‘₯
2
Substitute
𝑒2 βˆ’ 2𝑒 βˆ’ 15 = 0
𝑒+3 π‘’βˆ’5 =0
𝑒+3=0 π‘’βˆ’5=0
𝑒 = βˆ’3, 5
π‘₯
3
π‘₯
1
1
3
3
3
1
3
1
3
= βˆ’3, 5
= βˆ’3
= βˆ’3
π‘₯ = βˆ’27
π‘₯
3
π‘₯
1
1
3
3
3
=5
= 5
π‘₯ = 125
3
1.6 – More Equations and Applications
Solving Equations with Substitution
Examples:
𝑒 = π‘₯ βˆ’3 = 1, 8
π‘₯ βˆ’6 βˆ’ 9π‘₯ βˆ’3 + 8 = 0
𝑙𝑒𝑑 𝑒 = π‘₯ βˆ’3
2
π‘‘β„Žπ‘’π‘› 𝑒 = π‘₯
βˆ’3 2
=π‘₯
βˆ’6
Substitute
𝑒2 βˆ’ 9𝑒 + 8 = 0
π‘’βˆ’1 π‘’βˆ’8 =0
π‘’βˆ’1=0 π‘’βˆ’8=0
𝑒 = 1, 8
π‘₯ βˆ’3 = 8
π‘₯ βˆ’3 = 1
βˆ’1
βˆ’3
3
π‘₯
= 1
π‘₯=
1
1
1
βˆ’1
3
βˆ’1
βˆ’3
3
π‘₯
π‘₯=
3
π‘₯=1
= 8
1
8
1
1
π‘₯=
2
3
βˆ’1
3
Related documents