Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Dynamic and PassTransistor Logic Prof. Vojin G. Oklobdzija References (used for creation of the presentation material): 1. 2. 3. Masaki, “Deep-Submicron CMOS Warms Up to High-Speed Logic”, IEEE Circuits and Devices Magazine, November 1992. Krambeck, C.M. Lee, H.S. Law, “High-Speed Compact Circuits with CMOS”, IEEE Journal of Solid-State Circuits, Vol. SC-13, No 3, June 1982. V.G. Oklobdzija, R.K. Montoye, “Design-Performance Trade-Offs in CMOSDomino Logic”, IEEE Journal of Solid-State Circuits, Vol. SC-21, No 2, April 1986. References: 4. 5. 6. 7. Goncalves, H.J. DeMan, “NORA: A Racefree Dynamic CMOS Technique for Pipelined Logic Structures”, IEEE Journal of Solid-State Circuits, Vol. SC-18, No 3, June 1983. L.G. Heller, et al, “Cascode Voltage Switch Logic: A Differential CMOS Logic Family”, in 1984 Digest of Technical Papers, IEEE International Solid-State Circuits Conference, February 1984. L.C.M.G. Pfennings, et al, “Differential Split-Level CMOS Logic for Subnanosecond Speeds”, IEEE Journal of Solid-State Circuits, Vol. SC20, No 5, October 1985. K.M. Chu, D.L. Pulfrey, "A Comparison of CMOS Circuit Techniques: Differential Cascode Voltage Switch Logic Versus Conventional Logic", IEEE Jouirnal of Solid-State Circuits, Vol. SC-22, No.4, August 1987. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 2 References: Pass-Transistor Logic: 8. S. Whitaker, “Pass-transistor networks optimize n-MOS logic”, Electronics, September 1983. 9. K. Yano, et al, “A 3.8-ns CMOS 16x16-b Multiplier Using Complementary Pass-Transistor Logic”, IEEE Journal of Solid-State Circuits, Vol. 25, No 2, April 1990. 10. K. Yano, et al, “Lean Integration: Achieving a Quantum Leap in Performance and Cost of Logic LSIs", Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994. 11. M. Suzuki, et al, “A 1.5ns 32b CMOS ALU in Double Pass-Transistor Logic”, Journal of Solid-State Circuits, Vol. 28. No 11, November 1993. 12. N. Ohkubo, et al, “A 4.4-ns CMOS 54x54-b Multiplier Using Passtransistor Multiplexer”, Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 3 References: 13. V. G. Oklobdzija and B. Duchêne, “Pass-Transistor Dual Value Logic For Low-Power CMOS,” Proceedings of the 1995 International Symposium on VLSI Technology, Taipei, Taiwan, May 31-June 2nd, 1995. 14. F.S. Lai, W. Hwang, “Differential Cascode Voltage Switch with the PassGate (DCVSPG) Logic Tree for High Performance CMOS Digital Systems”, Proceedings of the 1993 International Symposium on VLSI Technology, Taipei, Taiwan, June 2-4, 1995 15. A. Parameswar, H. Hara, T. Sakurai, “A Swing Restored Pass-Transistor Logic Based Multiply and Accumulate Circuit for Multimedia Applications”, Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994. 16. T. Fuse, et al, “0.5V SOI CMOS Pass-Gate Logic”, Digest of Technical Papers, 1996 IEEE International Solid-State Circuits Conference, San Francisco February 8, 1996. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 4 Dynamic CMOS Logic Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 5 (a) Dynamic CMOS Latch (a), Dynamic CMOS Master-Slave Latch (b) Dynamic Node In I1 I2 X Out In I1 Cy Clock (a) Prof. V.G. Oklobdzija I3 Y Cx Cx Store I2 X (b) Advanced Digital Integrated Circuits 6 Out Dynamic Manchester Carry Chain precharge pi p i 1 + Vdd + Vdd + Vdd + Vdd pi 2 pi3 C i3 Ci Gi Prof. V.G. Oklobdzija G i 1 Gi 2 Advanced Digital Integrated Circuits Gi3 7 Radiation induced charge “1” + - + - + Cin - + “0” - - -particle Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits + + 8 Accidental charge caused by capacitive or inductive coupling between the signal lines Y and Z. (a) Prevention by inserting and inverter between the affected line and the passtransistor switch (b) v(Z) Z “1” Line1 Line2 MP1 (open) X=0 charge v(Y) +++ MN1 MP1 Cin ”0" ON (a) Z MP1 Y MN1 Inserted invertor Cin (b) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 9 CMOS Domino Logic +Vcc fD +Vcc p-type transistor network f N N f f n-type transistor network n-type transistor network f Clk GND GND (a) (b) CMOS logic block (a), Domino Logic (b) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 10 CMOS Domino Logic Operation Precharge phase Evaluation phase +Vcc +Vcc Q1 Q2 ++ N 0 0 ON + ++ ++ 1 F Inputs Inputs 0 1 Clock Q3 0 Prof. V.G. Oklobdzija F N 1 1 f 1 0 0 Clock f Discharge ON Q4 OFF ON GND GND Advanced Digital Integrated Circuits 11 CMOS Domino Logic Operation +Vcc +Vcc Q2 0 1 +Vcc Q2 10 1 10 1 f 01 f 1 f 1 Inputs Q4 1 Clock 0 Inputs 1 Inputs N 1 1 N Inputs f 1 10 +Vcc Q2 N N 1 1 1 Q2 Q4 1 GND Q4 GND Q4 GND GND Dominos Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 12 CMOS Domino Logic: Charge Re-Distribution +Vcc +Vcc Q1 Q2 N + + +1 ++ Charge ++ 0 0 0 1 ++ F F Charge Re-distribution f Inputs 0 Clock N 1 1 f Inputs 0 0 Q3 Clock GND Prof. V.G. Oklobdzija Q4 GND Advanced Digital Integrated Circuits 13 Variations of CMOS Domino Logic: NORA Logic +Vcc +Vcc F1 Q4 Q5 Clock 1 GND F1 Prof. V.G. Oklobdzija n-type transistor network p-type transistor network n-type transistor network 0 Q3 Q2 Q1 Clock +Vcc F2 Clock Q6 0 GND GND F2 Advanced Digital Integrated Circuits F3 14 CVS and DCVS Logic IBM (Heller et al. 1984) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 15 Cascode Voltage Switch Logic CVS +Vcc IBM small keeper transistor f N n-type transistor network f Input Signals Clock Precharge evaluation GND Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 16 DCVS Logic (IBM) +Vcc Q1 Q2 F Diff. inputs F Combinational logic network n- MOS Diff. inputs GND Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 17 DCVS Logic (IBM) Vdd Q differential inputs N1 Vdd N2 n-fet trees Q Q N1 differential inputs Clock Q N2 n-fet trees Clock (b) (a) Differential Cascode Voltage Switch Logic: (a) Static DCVLS (b) Dynamic DCVSL Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 18 DCVS Logic vs CMOS VDD VDD f f f N1 differential inputs N2 n-MOS transistor switching trees f f f inputs f Shared Transistors DCVS Logic consisting of two shared nMOS transistor switching networks Prof. V.G. Oklobdzija CMOS consisting of two separate: nMOS and pMOS transistor switching networks Advanced Digital Integrated Circuits 19 Transistor sharing in DCVS Logic: Implementation of 3-input XOR function Q Prof. V.G. Oklobdzija Q A A A A B B B B C C Q = a b c Advanced Digital Integrated Circuits 20 Switching Asymmetry in DCVSL VDD 1 VDD a a ON A B C VDD 1 OFF a 0 ++++ ++++ 1 1 + A ON b 0 B 0 ON + 0 + C ON b +a ++ + 1 A OFF + c a 1 C 1 + A ON 0 B 0 0 ON b ++ 1 a ++ ++++ A OFF + B OFF b c 0 C OFF B A B C ON + C Vdd a a c b c Both paths ON Prof. V.G. Oklobdzija This asymmetry causes current spikes and increased power consumption ! time Advanced Digital Integrated Circuits 21 Pass-Transistor Logic Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 22 Pass-Transistor Logic A B A F 0 1 0 0 1 1 1 0 F B B A B (a) B (b) (a) XOR function implemented with pass-transistor circuit, (b) Karnaough map showing derivation of the XOR function Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 23 Pass-Transistor Logic A X F Y A General topology of pass-transistor function generator Karnaough map of 16 possible functions that can be realized Prof. V.G. Oklobdzija X 0 0 1 1 0 0 1 1 B B B B B B B B Advanced Digital Integrated Circuits Y 0 1 0 1 B B B B 0 1 0 1 B B F 0 A A 1 AB AB AB AB AB AB A+B A B B B A B A B B B 24 Pass-Transistor Logic A Function generator implemented with passtransistor logic A B B P0 P1 F(A,B) P2 P3 Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 25 Pass-Transistor Logic A=Vdd + V th - B=Vdd Fmax = Vdd-Vth B Vdd Vdd Vdd + V V + th th -- Fmax = Vdd-Vth Cout Cout A (a) (b) Threshold voltage drop at the output of the pass-transistor gate Prof. V.G. Oklobdzija Voltage drop does not exceed Vth when there are multiple transistors in the path Advanced Digital Integrated Circuits 26 Pass-Transistor Logic +Vdd A=Vdd + V th Vdd + V th Fmax= Vdd In=Vdd ON Vdd - + Cout Cin Vdd A=0V (a) (b) Elimination of the threshold voltage drop by: (a) pairing nMOS transistor with a pMOS (b) using a swing-restoring inverter Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 27 Complementary Pass-Transistor Logic (CPL) Pass Variables Inputs Control Variables Prof. V.G. Oklobdzija f f F F Advanced Digital Integrated Circuits 28 Basic logic functions in CPL A B B A A B A B B B B A A B B A A A B B A A A B A B A C B C B C B C Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 29 CPL Logic A A A A B n1 n2 B B n3 n4 B C Q C Qb S S XOR gate (a) (b) S S Sum circuit CPL provides an efficient implementation of XOR function Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 30 CPL Inverter Level Restoration Transistor Output Inverter Input Output Feedback Inverter Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 31 Double Pass-Transistor Logic (DPL): VDD B B A AND/NAND A A B B B A A O A O B A B A B A XOR/XNOR B B A A B B A A B O Prof. V.G. Oklobdzija A B O Advanced Digital Integrated Circuits 32 Double Pass-Transistor Logic (DPL): A A A A B n1 n1 p2 B p2 B p1 p1 n2 n2 C B Q C Qb O O S (a) XOR S (b) One bit full-adder: Sum circuit Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 33 Double Pass-Transistor Logic (DPL): AND/NAND DPL Full Adder Vcc A A C C Vcc B B S Vcc A S A Multiplexer B B OR/NOR Prof. V.G. Oklobdzija Buffer The critical path traverses two transistors only (not counting the buffer) Advanced Digital Integrated Circuits 34 Formal Method for CPL Logic Derivation Markovic et al. 2000 (a) Cover the Karnaugh-map with largest possible cubes (overlapping allowed) (b) Express the value of the function in each cube in terms of input signals (c) Assign one branch of transistor(s) to each of the cubes and connect all the branches to one common node, which is the output of NMOS pass-transistor network Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 35 Formal Method for P-T Logic Derivation Complementary function can be implemented from the same circuit structure by applying complementarity principle: Complementarity Principle: Using the same circuit topology, with pass signals inverted, complementary logic function is constructed in CPL. By applying duality principle, a dual function is synthesized: Duality Principle: Using the same circuit topology, with gate signals inverted, dual logic function is constructed. Following pairs of basic functions are dual: AND-OR (and vice-versa) NAND-NOR (and vice-versa) XOR and XNOR are self-dual (dual to itself) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 36 Derivation of P-T Logic A AND B A NAND B A A OR B OR B B B B 0 1 0 1 0 1 0 0 0 0 1 1 A 0 1 1 A 1 0 1 A 1 1 0 1 1 0 L1 L2 L1 L2 L1 L2 A B A B A B L2 L1 L2 L1 L1 L2 B B B B B B AND NAND (OR) Copmplementarity: AND NAND; Prof. V.G. Oklobdzija OR Duality: AND OR Advanced Digital Integrated Circuits 37 Derivation of CPL Logic Complementarity: AND NAND A B B 0 1 0 0 0 A 1 0 1 L1 L2 (a) A B L 2 L1 A A B B B B B AND NAND (b) A B OR B NOR (c) Duality: AND OR NAND NOR Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 38 Derivation of CPL Logic A B 0 A 1 B 0 1 0 1 1 A L2 L1 A A B B 0 L1 A L2 XOR XNOR (b) (a) (a) XOR function Karnaugh map, (b) XOR/XNOR circuit Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 39 Synthesis of three-input CPL logic BC A C 00 0 01 0 11 0 10 0 0 A C B L1 L2 L3 A C A L1 A B A 1 0 0 1 L3 0 L2 B B AND (a) NAND (b) (a) AND function Karnaugh map, (b) AND/NAND circuit Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 40 B Double Pass-Transistor Logic (DPL): Synthesis Rules 1. Two NMOS branches can not be overlapped covering logic 1s. Similarly, two PMOS branches can not be overlapped covering logic 0s. 2. Pass signals are expressed in terms of input signals or supply. Every input vector has to be covered with exactly two branches. 3. At any time, excluding transitions, exactly two transistor branches are active (any of the pairs NMOS/PMOS, NMOS/NMOS and PMOS/PMOS are possible), i.e. they both provide output current. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 41 Double Pass-Transistor Logic (DPL): Synthesis Rules Complementarity Principle: Complementary logic function in DPL is generated after the following modifications: • Exchange PMOS and NMOS devices. Invert all pass and gate signals Duality Principle: Dual logic function in DPL is generated when: • PMOS and NMOS devices are exchanged, and VDD and GND signals are exchanged. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 42 DPL Synthesis: B A B 0 0 1 0 L3 0 A B A L 4 L2 A B 0 1 L1 A L2 B NAND A B L3 L1 GND GND B +VDD +VDD (b) (a) (a) AND function Karnaugh map Prof. V.G. Oklobdzija A AND L4 A 1 B (b) AND/NAND circuit Advanced Digital Integrated Circuits 43 DPL Synthesis: OR/NOR circuit +VDD A +VDD B A B A B OR A A B B Prof. V.G. Oklobdzija NOR A B GND Advanced Digital Integrated Circuits GND 44 DPL Synthesis: B A B 0 0 1 0 L3 B A L 4 L2 A 0 B A B 0 1 L1 (a) B AND L4 A 1 A A NAND A B L3 L1 GND GND L2 +VDD A +VDD (b) AND function Karnaugh map B +VDD AND/NAND circuit +VDD B A B A B OR A B Prof. V.G. Oklobdzija NOR A B A Complementarity Principle: Exchange PMOS and NMOS devices. Invert all pass and gate signals AND NAND B GND Advanced Digital Integrated Circuits GND Duality Principle: PMOS and NMOS devices are exchanged, and VDD and GND signals are exchanged: AND OR NAND NOR 45