Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CISE301: Numerical Methods Topic 7 Numerical Integration Lecture 24-27 KFUPM Read Chapter 21, Section 1 Read Chapter 22, Sections 2-3 CISE301_Topic7 KFUPM 1 Lecture 24 Introduction to Numerical Integration Definitions Upper and Lower Sums Trapezoid Method (Newton-Cotes Methods) Romberg Method Gauss Quadrature Examples CISE301_Topic7 KFUPM 2 Integration Definite Integrals Indefinite Integrals 1 2 x x dx 2 c x 0 xdx 2 Indefinite Integrals of a function are functions that differ from each other by a constant. CISE301_Topic7 2 1 0 1 2 Definite Integrals are numbers. KFUPM 3 Fundamental Theorem of Calculus If f is continuous on an interval [a,b] , F is antiderivative of f b a (i.e., F ' ( x) f ( x) ) f(x)dx F(b) F(a) There is no antiderivative for: e No closed form solution for: CISE301_Topic7 KFUPM b a x2 x2 e dx 4 The Area Under the Curve One interpretation of the definite integral is: Integral = area under the curve f(x) Area a CISE301_Topic7 b a f(x)dx b KFUPM 5 Upper and Lower Sums The interval is divided into subintervals. Partition P a x0 x1 x2 ... xn b Define mi min f ( x) : xi x xi 1 f(x) M i max f ( x) : xi x xi 1 n 1 Lower sum L( f , P) mi xi 1 xi i 0 n 1 Upper sum U ( f , P) M i xi 1 xi i 0 x0 x1 x2 x3 a CISE301_Topic7 KFUPM b 6 Upper and Lower Sums n 1 Lower sum L( f , P ) mi xi 1 xi i 0 n 1 Upper sum U ( f , P ) M i xi 1 xi f(x) i 0 Estimate of the integral Error L U 2 U L 2 x0 x1 x2 x3 CISE301_Topic7 KFUPM a b 7 Example 1 0 x 2 dx 1 2 3 Partition : P 0, , , ,1 4 4 4 n 4 (four equal intervals ) 1 1 9 m0 0, m1 , m2 , m3 16 4 16 1 1 9 M 0 , M1 , M 2 , M 3 1 16 4 16 1 xi 1 xi 4 CISE301_Topic7 for i 0,1, 2, 3 0 KFUPM 1 4 1 2 3 4 1 8 Example n 1 Lower sum L( f , P ) mi xi 1 xi i 0 L( f , P ) 1 1 1 9 14 0 4 16 4 16 64 n 1 Upper sum U ( f , P ) M i xi 1 xi i 0 U ( f , P) 11 1 9 30 1 4 16 4 16 64 1 30 14 11 Estimate of the integral 2 64 64 32 1 30 14 1 Error 2 64 64 8 CISE301_Topic7 KFUPM 0 1 4 1 2 3 4 1 9 Upper and Lower Sums • Estimates based on Upper and Lower Sums are easy to obtain for monotonic functions (always increasing or always decreasing). • For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive. CISE301_Topic7 KFUPM 10 Newton-Cotes Methods In Newton-Cote Methods, the function is approximated by a polynomial of order n. Computing the integral of a polynomial is easy. b a b a f ( x)dx b a n a a x ... a x 0 1 dx n (b 2 a 2 ) (b n 1 a n 1 ) f ( x)dx a0 (b a ) a1 ... an 2 n 1 CISE301_Topic7 KFUPM 11 Newton-Cotes Methods Trapezoid Method (First Order Polynomials are used) b a f ( x)dx b a a0 a1x dx Simpson 1/3 Rule (Second Order Polynomials are used) b a CISE301_Topic7 f ( x)dx b a a 0 KFUPM a1x a2 x dx 2 12 Lecture 25 Trapezoid Method Derivation-One Interval Multiple Application Rule Estimating the Error Recursive Trapezoid Method Read 21.1 CISE301_Topic7 KFUPM 13 Trapezoid Method b f (b) f (a) f (a) ( x a) ba f(x) I f ( x)dx a f (b) f (a ) I f (a) ( x a ) dx a ba b b f (b) f (a ) f (a) a x ba a 2 b f (b) f (a ) x ba 2 a CISE301_Topic7 b b a KFUPM a f (b) f (a ) 2 14 Trapezoid Method Derivation-One Interval f (b) f (a ) I f ( x)dx f (a ) ( x a ) dx a a ba b f (b) f (a ) f (b) f (a ) I f (a) a x dx a ba ba b b b 2 b f (b) f (a ) f (b) f (a ) x f (a) a x ba ba 2 a a f (b) f (a ) f (b) f (a ) 2 f (a) a (b a 2 ) b a ba 2(b a ) f (b) f (a ) b a 2 CISE301_Topic7 KFUPM 15 Trapezoid Method f(x) f (b ) f (a ) ba f (a) f (b) Area 2 a CISE301_Topic7 b KFUPM 16 Trapezoid Method Multiple Application Rule The interval [a, b] is f(x) f ( x2 ) f ( x1 ) x2 x1 Area 2 partitione d into n segments a x0 x1 x2 ... xn b b a f ( x)dx sum of the areas of the trapezoid s x x0 a CISE301_Topic7 KFUPM x1 x2 x3 b 17 Trapezoid Method General Formula and Special Case If the interval is divided into n segments (not necessaril y equal) a x0 x1 x2 ... xn b n 1 1 f ( x)dx xi 1 xi f ( xi 1 ) f ( xi ) i 0 2 b a Special Case ( Equalliy spaced base points) xi 1 xi h for all i b a n 1 1 f ( x)dx h f ( x0 ) f ( xn ) f ( xi ) i 1 2 CISE301_Topic7 KFUPM 18 Example Given a tabulated values of the velocity of an object. Time (s) 0.0 1.0 2.0 3.0 Velocity (m/s) 0.0 10 12 14 Obtain an estimate of the distance traveled in the interval [0,3]. Distance = integral of the velocity Distance CISE301_Topic7 3 0 V (t ) dt KFUPM 19 Example 1 The interval is divided Time (s) 0.0 1.0 2.0 3.0 into 3 subinterva ls Velocity (m/s) 0.0 10 12 14 Base points are0,1,2,3 Trapezoid Method h xi 1 xi 1 1 n 1 T h f ( xi ) f ( x0 ) f ( xn ) 2 i 1 1 Distance 1(10 12) (0 14) 29 2 CISE301_Topic7 KFUPM 20 Estimating the Error For Trapezoid Method How many equally spaced intervals are needed to compute 0 sin( x)dx to 5 decimal digit accuracy ? CISE301_Topic7 KFUPM 21 Error in estimating the integral Theorem Assumption : f ' ' ( x) is continuous on [a,b] Equal intervals (width h) Theorem : approximat e If Trapezoid Method is used to b a f ( x)dx then b a 2 '' Error h f ( ) where [a,b] 12 ba 2 Error h max f ' ' ( x) x[ a ,b ] 12 CISE301_Topic7 KFUPM 22 Example 0 sin( x)dx, 1 find h so that error 10 5 2 ba 2 Error h max f ' ' ( x) x[ a ,b ] 12 b ; a 0; f ' ( x) cos( x); f ' ' ( x) sin( x) 1 f ' ' ( x) 1 Error h 10 5 12 2 6 2 5 h 10 2 CISE301_Topic7 KFUPM 23 Example x 1.0 1.5 2.0 2.5 3.0 f(x) 2.1 3.2 3.4 2.8 2.7 Use Trapezoid method to compute : 3 1 f ( x)dx n 1 1 Trapezoid T ( f , P) xi 1 xi f ( xi 1 ) f ( xi ) i 0 2 Special Case : h xi 1 xi for all i, 1 n 1 T ( f , P) h f ( xi ) f ( x0 ) f ( xn ) 2 i 1 CISE301_Topic7 KFUPM 24 Example x 1.0 1.5 2.0 2.5 3.0 f(x) 2.1 3.2 3.4 2.8 2.7 3 1 CISE301_Topic7 n1 1 f ( x)dx h f ( xi ) f ( x0 ) f ( xn ) 2 i 1 1 0.5 3.2 3.4 2.8 2.1 2.7 2 5.9 KFUPM 25 Recursive Trapezoid Method Estimate based on one interval : f(x) h ba ba f (a) f (b) R (0,0) 2 a CISE301_Topic7 KFUPM ah 26 Recursive Trapezoid Method Estimate based on 2 intervals : h ba 2 Recall special case of Trapezoid Method!! f(x) R (1,0) ba 1 f ( a h ) f ( a ) f ( b ) 2 2 R (1,0) 1 R (0,0) h f (a h) 2 Based on previous estimate a ah a 2h Based on new point CISE301_Topic7 KFUPM 27 Recursive Trapezoid Method f(x) ba h 4 R (2,0) R(2,0) ba f (a h) f (a 2h) f (a 3h) 4 1 f (a ) f (b) 2 1 R(1,0) h f (a h) f (a 3h) 2 a Based on previous estimate a 2h a 4h Based on new points CISE301_Topic7 KFUPM 28 Recursive Trapezoid Method Formulas ba f (a) f (b) R (0,0) 2 1 R (n,0) R (n 1,0) h f a (2k 1)h 2 k 1 2 ( n1) ba h n 2 CISE301_Topic7 KFUPM 29 Recursive Trapezoid Method ba , 2 ba f (a) f (b) 2 1 1 R(1,0) R(0,0) h f a (2k 1)h 2 k 1 ba h 2 , 2 1 2 R(2,0) R(1,0) h f a (2k 1)h 2 k 1 ba h 3 , 2 2 1 R(3,0) R(2,0) h f a (2k 1)h 2 k 1 h b a, h R (0,0) 2 .................. h ba , n 2 CISE301_Topic7 2 1 R(n,0) R(n 1,0) h f a (2k 1)h 2 k 1 ( n 1) KFUPM 30 Advantages of Recursive Trapezoid Recursive Trapezoid: Gives the same answer as the standard Trapezoid method. Makes use of the available information to reduce the computation time. Useful if the number of iterations is not known in advance. CISE301_Topic7 KFUPM 31 Lecture 26 Romberg Method Motivation Derivation of Romberg Method Romberg Method Example When to stop? Read 22.2 CISE301_Topic7 KFUPM 32 Motivation for Romberg Method Trapezoid formula with an interval h gives an error of the order O(h2). We can combine two Trapezoid estimates with intervals 2h and h to get a better estimate. CISE301_Topic7 KFUPM 33 Romberg Method Estimates using Trapezoid method with intervals of size h, 2h, 4h,8h,... are combined to improve the approximation of First column is obtained using Trapezoid Method b a f ( x) dx R(0,0) R(1,0) R(1,1) R(2,0) R(2,1) R(2,2) R(3,0) R(3,1) R(3,2) R(3,3) The other elements are obtained using the Romberg Method CISE301_Topic7 KFUPM 34 First Column Recursive Trapezoid Method ba f (a) f (b) R (0,0) 2 1 R (n,0) R (n 1,0) h f a (2k 1)h 2 k 1 2 ( n1) ba h n 2 CISE301_Topic7 KFUPM 35 Derivation of Romberg Method b a b a ba Trapezoid method with h n 1 2 f ( x)dx R(n 1,0) O(h ) 2 f ( x)dx R(n 1,0) a2 h 2 a4 h 4 a6 h 6 ... (eq1) More accurate estimate is obtained by R(n,0) 1 1 1 2 4 6 f ( x ) dx R ( n , 0 ) a h a h a h ... 2 4 6 a 4 16 64 eq1 4 * eq 2 gives b b a (eq 2) 1 f ( x)dx R(n,0) R(n,0) R(n 1,0) b4 h 4 b6 h 6 ... 3 CISE301_Topic7 KFUPM 36 Romberg Method ba R(0,0) f (a) f (b) R (0,0) R(1,0) R(1,1) 2 R(2,0) R(2,1) ba h n , R(3,0) R(3,1) 2 2 ( n1) 1 R(n,0) R(n 1,0) h f a (2k 1)h 2 k 1 R(2,2) R(3,2) R(3,3) 1 R(n, m) R(n, m 1) m R(n, m 1) R(n 1, m 1) 4 1 for n 1, m 1 CISE301_Topic7 KFUPM 37 Property of Romberg Method R(0,0) Theorem b R(1,0) R(1,1) f ( x)dx R(n, m) O(h 2 m 2 ) R(3,0) R(3,1) R(3,2) R(3,3) a Error Level CISE301_Topic7 R(2,0) R(2,1) R(2,2) O( h 2 ) KFUPM O(h 4 ) O( h 6 ) O( h 8 ) 38 Example 1 Compute 1 0 x 2 dx 0.5 ba 1 f (a) f (b) 0 1 0.5 h 1, R (0,0) 2 2 1 1 11 11 3 h , R (1,0) R (0,0) h( f (a h)) 2 2 22 24 8 R (n, m) R (n, m 1) 1 4 1 for n 1, m 1 R (1,1) R (1,0) CISE301_Topic7 1 41 1 m 3/8 1/3 R(n, m 1) R(n 1, m 1) R(1,0) R(0,0) 3 1 3 1 1 8 KFUPM 3 8 2 3 39 Example 1 (cont.) 0.5 3/8 1/3 11/32 1/3 1 1 h , R (2, 0) R(1, 0) h( f (a h) f (a 3h)) 4 2 1/3 1 3 1 1 9 11 2 8 4 16 16 32 1 R(n, m 1) R(n 1, m 1) m 4 1 1 11 1 11 3 1 R (2,1) R(2, 0) 1 R(2, 0) R(1, 0) 4 1 32 3 32 8 3 1 1 1 1 1 1 R (2, 2) R(2,1) 2 R(2,1) R(1,1) 4 1 3 15 3 3 3 R (n, m) R (n, m 1) CISE301_Topic7 KFUPM 40 When do we stop? STOP if R(n, m 1) R(n 1, m 1) or After a given number of steps, for example, STOP at R(4,4) CISE301_Topic7 KFUPM 41 Lecture 27 Gauss Quadrature Motivation General integration formula Read 22.4 CISE301_Topic7 KFUPM 42 Motivation Large overall error Figure 22.6, p. 641 Smaller overall error CISE301_Topic7 KFUPM 43 Motivation (Contd.) Trapezoid Method: 1 n 1 f ( xi ) f ( x0 ) f ( xn ) a f ( x)dx h 2 i 1 It can be expressed as: b b a n f ( x)dx ci f ( xi ) i 0 h where ci 0.5 h CISE301_Topic7 i 1, 2,..., n 1 i 0 and n KFUPM 44 General Integration Formula b a n f ( x)dx ci f ( xi ) ci : Weights i 0 xi : Nodes Question : Can we select ci and xi so that the formula gives a better approximation of the integral? CISE301_Topic7 KFUPM 45 Question What is the best way to choose the nodes and the weights? CISE301_Topic7 KFUPM 46 Question (Contd.) • From previous figure, the integration is exact for a polynomial of order 3 with 4 points (c0, c1, x0, and x1) • Integrate each of the four f(x) polynomials (1, x, x 2 , x 3 ) 1 1 • Solve for c0, c1, x0, and x1 c0 = c1 = 1, x0 = , x1 = 3 3 CISE301_Topic7 KFUPM 47 Gauss–Legendre Quadrature (generalization of previous example) An n-point Gauss-Legendre Quadrature rule is constructed to yield an exact result for − 1 or less by a suitable choice of the points x and weights c for i = 1, ..., n. polynomials of degree 2n i i b a n f ( x)dx ci f ( xi ) i 0 where ci 2 (1 x ) Pn( xi ) 2 2 i , n k 1 n k n Pn ( x) 2 x 2 k 0 k n n Source: CISE301_Topic7 and KFUPM 48 Gauss–Legendre Quadrature See more in Table 22.1 (page 646) 1 1 n f ( x)dx ci f ( xi ) n 1 i 0 x0 0.57735, x1 0.57735 (2 pts.) c0 1, c1 1 n 2 x0 0.774596, x1 0.000000, x2 0.774596 (3 pts.) c0 0.555556, c1 0.888889, c2 0.555556 n 3 x0 0.86113, x1 0.33998, x2 0.33998, x3 0.86113 (4 pts.) c0 0.34785, c1 0.65214, c2 0.65214, c3 0.34785 n 4 x0 0.906179, x1 0.538469, x2 0.00000, x3 0.538469, x4 0.906179 (5 pts.) c0 0.236926, CISE301_Topic7 c1 0.478628, c2 0.568889, c3 0.478628, c4 0.236926 KFUPM 49 Error Analysis for Gauss Quadrature Let the integral b a b a f ( x) dx be approximated by: n f ( x)dx ci f ( xi ) i 0 where ci and xi are selected according to the Gauss Quadrature formula, Then, the true error satisfies: Error 22n 3 (n 1)! 4 (2n 3) (2n 2)! 3 f (2 n 2) ( ), [1,1] The formula will be exact for all polynomials of order 2n 1 CISE301_Topic7 KFUPM 50 Example Evaluate 1 0 e x2 dx using Gaussian Quadrature with n 1. 1 1 (i.e. using f ( x)dx c0 f x0 c1 f x1 f f ) 1 3 3 1 b How do we use the formula to compute: f ( x)dx a for arbitrary a and b? CISE301_Topic7 b a ba f ( x)dx 2 ba ba 1 f 2 t 2 dt 1 KFUPM 51 Example 1 x2 e dx 0 1 2 1 1 e .5t .5 0.5 1 e 2 CISE301_Topic7 2 dt 1 .5 3 2 KFUPM 1 0.5 .5 3 e 2 52 Improper Integrals Methods discussed earlier can not be used directly to approximat e improper integrals (one of the limits is or ) Use a transform ation like the following 1 1 a f ( x)dx t 2 f t dt , (assuming ab 0) and apply the method on the new function. b Example : CISE301_Topic7 1 a 1 b 1 1 1 dx 2 0 x 1 1 dt 2 2 t 1 t KFUPM 53