Download B.2 Rational Algebraic Expressions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
B.2
Rational Expressions
Reduction of rational expressions
Algebra of rational expressions
Complex rational expressions
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
.
Definition of Rational Expression
A rational expression in x is a ration
R x  
p x 
q x 
Where p( x ) and q ( x ) are polynomials in
q  x  0
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
x and
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Note:
Since an integer is a polynomial of degree
zero, every rational number is a rational
expression. Other examples of rational
expressions are
x  x 1
R x  
2x  5
2
2a 2  5a  6
W a   3
a  8a  1
y 2  5y  6
Q y  
y 2 1
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
E - BOOK FOR COLLEGE ALGEBRA
King Fahd University of Petroleum & Minerals
Definition:
p  x
The domain of the rational function R  x  
q  x
consists of all real numbers except those for
which q (x ) = 0
Definition
p  x
The value of the rational expression R  x  
q  x
when x is equal to a is obtained by replacing x
by a in R ( x ).
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Example 1
3x  2
1
find R  
R  x 
2
2x 1
Solution
1
3   2
2
1
R   
 2  2 1  1
 
2
7
3
2
 2
 2
2
11
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
7

4
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Example 2
Find the domain of
3x 2  2 x  1
Q  x 
x2 1
Solution
3x 2  2x  1 3x 2  2x  1
Q x  

2
x 1
(x  1)(x  1)
The domain of Q( x ) is all real numbers except
x = 1 and -1
(, 1)  (1,1)  (1, )
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Reducing Rational Expressions
p  x
Reducing R  x  
q  x
consists of two steps:
Step 1 Factor both p  x  and q  x 
Step 2 Divide both p  x  and q  x  by the greatest
common factor.
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Example 3
3x  9x  6
1.
2
2x  8
2
Reduce to lowest terms
3  x  3x  2 
2



2  x 2  4
3  x  2  x  1
2  x  2  x  2 
3  x  1
2  x  2
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
, x  2
E - BOOK FOR COLLEGE ALGEBRA
3w  3w
2.
w 3 w
4


3w w 3  1
King Fahd University of Petroleum & Minerals
w w 2  1
3w w  1 w 2  w  1
w w  1w  1
3 w  w  1
2

w 1
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
,w  0,1, 1
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Multiplication and Division of
Rational Expressions
p x  r x  p x  r x 


Multiplication:
q  x  t  x  q  x t  x 
Division:
p x 
r x 
p  x  t  x  p  x t  x 




q x  t x  q x  r x  q x  r x 
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Example 4
Perform the indicated operations
and reduce the resulting rational
expression.
6x  8
4x  4x  1
1.

2
2x  5x  3
6x  3
2
2  3x  4  2x  1

 2x  1 x  3 3  2x  1
2
2  3x  4 
1

, x 
3  x  3
2
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
9  6x  x
x  xk  3x  3k
2.

2
9  6x  x
x 2 9
2

2
2
2
9

6
x

x
x

  9
2
2
9

6
x

x
x

  xk  3x  3k 
x  3  x  3 x  3


2
 x  3 x  x  k   39x  k 
2
x  3  x  3


2
 x  3  x  3 x  k 
3
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
x  3


,x
 x  3 x  k 
2
 3, 3,  k
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Addition and Subtraction of
Rational Expressions
Identical denominators
a c a c
 
b b
b
Different denominator
Least Common Denominator(L.C.D)
a c ad  bc
 
b d
bd
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
E - BOOK FOR COLLEGE ALGEBRA
Example 5
King Fahd University of Petroleum & Minerals
Find the L.C.D.
x 2
2x
and
2
x  2x  15
x 2  4x  5
Solution
d1  x 2  2x 15   x  3 x  5
d 2  x 2  4x  5   x  5 x  1
L .C .D .   x  5 x  1 x  3
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Example 6
Perform the indicated operations and
simplify.
4x  a 3x  1
1. 2

2
x a
ax
Solution
The L.C.D.= (x – a) ( x + a)
1 3x  1 x  a 

4x  a


 x  a  x  a 
 x  a  x  a 
3x  3xa  3x


 x  a  x  a 
2
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
3  x 2  xa  x 
 x  a  x  a 
E - BOOK FOR COLLEGE ALGEBRA
King Fahd University of Petroleum & Minerals
Example 6. (cont.)
4
2
2
2.

 2
3x x  1 x  x
Solution
The L.C.D.= 3 x ( x + 1)
4  x  1
6x
6



3x  x  1 3x  x  1 3x  x  1
10  x  1
1
10x  10



3x  x  1 3x
3x  x  1
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
E - BOOK FOR COLLEGE ALGEBRA
King Fahd University of Petroleum & Minerals
Complex Rational Expressions:
An algebraic expression which has rational
expressions in its numerator or denominator is
called a complex rational expression. For
example,
1
2

2 3 , and
1 3

4 8
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
1
2

x 2 x 2
3
4

x 2
x 2
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Complex Rational Expressions:
To simplify such a complex expression we multiply
both its numerator and denominator by the L.C.D.
of all the algebraic expressions involved in the
makeup of the complex expression.
Example 7
Simplify the following complex rational expressions:
a)
2
2

3
3x
2
1

3x 2
6
b)
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
a
1

x 2  a2
x a
1
3
 2
ax
a x 2
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Solution
a)
2
2
 2 2 



3
3x  3 3x  6x
 2

2
1
1


  6x
2
2
3x
6
6
 3x
2x 2  4x

4x 2

 x  2
2  x 2  x 
2x
2x

x 2
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
King Fahd University of Petroleum & Minerals
E - BOOK FOR COLLEGE ALGEBRA
Solution
a
1

2
2
x a
b) x a
1
3
 2
ax
a x 2
L .C .D   x  a  x  a 
1 
 a

 x 2  a2 x  a 


1
3


 2
2
 ax a x 

a  x  a
x  a  3

 x a  x a 
 x a  x a 
2a  x
33  x  a
KFUPM - Prep Year Math Program (c) 2009 All Right Reserved
Related documents