Download 11.3 Solving Quadratic Equations by the Quadratic Formula

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
11.3 Solving
Quadratic Equations
by the Quadratic
Formula
Objective 1
Derive the quadratic formula.
Slide 11.3- 2
Derive the quadratic formula.
Solve ax2 + bx + c = 0 by completing the square (assuming a > 0).
b 
b 2 c

x
  2
2a 
4a
a

2
2
b
b
4ac


x   2 
2
2
a
4
a
4
a


2
ax  bx  c  0
2
b
c
x  x 0
a
a
b
c
2
x  x
a
a
2
2
2
b
b
 4ac


x  
2
2
a
4
a


b
b 2  4ac
x

2a
4a 2
2
 1  b   b 
b2
 2  a     2a   4a 2
    
2
2
2
b
b
c
b
x2  x  2    2
a
4a
a 4a
b
b 2  4ac
or x 

2a
4a 2
Slide 11.3- 3
Derive the quadratic formula.
b
b 2  4ac
x

2a
4a 2
b
b 2  4ac
or x 

2a
4a 2
b
b  4ac
x

2a
2a
b  b  4ac
or x 

2a
2a
b
b2  4ac
x

2a
2a
b
b2  4ac
or x 

2a
2a
b  b2  4ac
x
2a
b  b2  4ac
or x 
2a
2
2
Slide 11.3- 4
Derive the quadratic formula.
Quadratic Formula
The solutions of the equation ax2 + bx + c = 0 (a ≠ 0) are given by
b  b2  4ac
x
.
2a
Slide 11.3- 5
Objective 2
Solve quadratic equations by using the
quadratic formula.
Slide 11.3- 6
CLASSROOM
EXAMPLE 1
Solve
Using the Quadratic Formula (Rational Solutions)
4 x 2  11x  3  0.
Solution:
a = 4, b = –11 and c = –3
b  b2  4ac
x
2a
(11)  (11)2  4(4)(3)
x
2(4)
11  121  48
x
8
11  169
x
8
The solution set is
11  13
x
8
11  13
x
8
24

3
8
11  13
x
8
2
1


8
4
 1 
 ,3 .
 4 
Slide 11.3- 7
CLASSROOM
EXAMPLE 2
Solve
Using the Quadratic Formula (Irrational Solutions)
2 x 2  19  14 x.
Solution:
2 x 2  14 x  19  0
a = 2, b = –14 and c = 19
b  (b)2  4(a)(c)
x
2(a)
(14)  (14)2  4(2)(19)
x
2(2)
14  196  152
x
4
14  44
x
4
14  4 11
x
4
14  2 11
x
4
2(7  11) 7  11


4
2
14  2 11
x
4
2(7  11) 7  11


4
2
The solution set is
 7  11 

.
 2 
Slide 11.3- 8
CLASSROOM
Solve
quadratic equations by using the quadratic
EXAMPLE 1
formula.
1. Every quadratic equation must be expressed in standard form
ax2+bx+c=0 before we begin to solve it, whether we use factoring or the
quadratic formula.
2. When writing solutions in lowest terms, be sure to FACTOR FIRST.
Then divide out the common factor.
Slide 11.3- 9
CLASSROOM
EXAMPLE 3
Using the Quadratic Formula (Nonreal Complex Solutions)
Solve ( x  5)( x  1)
 10 x.
Solution:
x 2  6 x  5  10 x
x2  4x  5  0
a = 1, b = 4 and c = 5
b  (b)2  4(a)(c)
x
2(a)
(4)  (4) 2  4(1)(5)
x
2(1)
4  16  20
x
4
4  4
x
2
4  2i
x
2
2(2  i)
x
2
x  2i
The solution set is
2  i.
Slide 11.3- 10
Objective 3
Use the discriminant to determine the
number and type of solutions.
Slide 11.3- 11
Use the discriminant to determine the number and
type of solutions.
Discriminant
The discriminant of ax2 + bx + c = 0 is b2 – 4ac. If a, b, and c are
integers, then the number and type of solutions are determined as
follows.
Discriminant
Number and Type of
Solutions
Positive, and the square of an
integer
Two rational solutions
Positive, but not the square of
an integer
Two irrational solutions
Zero
One rational solution
Negative
Two nonreal complex solutions
Slide 11.3- 12
CLASSROOM
EXAMPLE 4
Using the Discriminant
Find the discriminant. Use it to predict the number and type of solutions for
each equation. Tell whether the equation can be solved by factoring or
whether the quadratic formula should be used.
10 x 2  x  2  0
Solution:
a = 10, b = –1, c = –2
b2  4ac  (1)2  4(10)(2)
 1  80
 81
There will be two rational solutions, and the equation can be solved by
factoring.
Slide 11.3- 13
CLASSROOM
EXAMPLE 4
Using the Discriminant (cont’d)
Find each discriminant. Use it to predict the number and type of solutions
for each equation. Tell whether the equation can be solved by factoring or
whether the quadratic formula should be used.
3x 2  x  7
Solution:
16 x 2  25  40 x
16 x 2  40 x  25  0
3x 2  x  7  0
b2  4ac  (1)2  4(3)(7)
a = 16, b = –40, c = 25
b2  4ac  (40)2  4(16)(25)
 1  84
 1600 1600
 85
0
There will be two irrational solutions.
Solve by using the quadratic formula.
There will be one rational solution.
Solve by factoring.
Slide 11.3- 15
CLASSROOM
EXAMPLE 5
Using the Discriminant
Find k so that the equation will have exactly one rational solution.
x2 – kx + 64 = 0
Solution:
b2  4ac  (k )2  4(1)(64)
 k 2  256
k 2  256  0
k 2  256
k  16 or k  16
There will be only on rational solution if k = 16 or k = 16.
Slide 11.3- 16
Related documents