Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter6:Counting,Probability,andInference 6.1IntroductiontoProbability Whenoutcomesofasituationareequallylikely,the___________________ofaneventis the__________________or_____________________ofoutcomesthatfittheevent. Definitions • • • • Experiment–asituationwithseveralpossibleresults Probabilities–ameasureofhowrelativelyoftentheresultsoccur. Outcome–eachresultofanexperiment SampleSpace–thesetofallpossibleoutcomesofanexperiment Ex1:Twosix-sideddice,oneredandonegreen,arethrown,andbothnumbersare recorded. a) Listallpossibleoutcomesfortheexperiment. b) Howmanyoutcomesareinthesamplespaceforthisexperiment? a) b) EventsandProbabilities Whentwodicearethrown,peopleareoftenconcernedwiththesumofthedotsof thedice.Forexample,theymaywanttogetasumof7.Thisiscalledanevent.An eventisanysubsetofthesamplespaceofanexperiment. Eventdescription Tossingdoubles Outcomeintheevent Tossingasumof10 Tossinga3onthereddie Tossingasumof1 DefinitionofProbabilityofanEvent 𝑷 𝑬 = 𝑵(𝑬) = 𝑵 𝑺 Experiment-tosstwodice Event-tossingasumlessthan4:_____________________________________N(E)=_______ Sample=_____ Probability=______________ Ex2:Anexperimentconsistsoftossingtwofaircoinsandcountingthenumberof heads.Considertheevents1headinall,2headsinall,and0headsinall.Arethese eventsequallylikely? a) Thesamplespaceis{_____,_____,_____,_____} b) Thereis__outcomefortheevent0heads,__outcomesintheevent1head, and__outcomeintheevent2heads.Theseeventsare/arenotequally likely. Ex3:Aresearcherisstudyingthenumberofboysandgirlsinfamilieswiththree children.Assumethatthebirthofaboyoragirlisequallylikely. a) Listthesamplespace. b) Findtheprobabilitythatafamilyofthreechildrenhasexactlyoneboy. Outcomes=___ Eventofonly1boy=___ P(1boy)=____ 6.2PrinciplesofProbability UnionofSets:AÈB,theunionofAandB,containsall____________thatareeitherinA orinB.IfAandBhavenoelementsincommon,theyarecalled______________setsor ______________________________sets. AdditionCountingPrinciple(MutuallyExclusiveForm) Activity1:Tossapairofsix-sideddice20times,recordthesuminthefrequency table: Sum 2 3 4 5 6 7 Frequency Sum 8 9 10 11 12 Whatistherelativefrequencyofhavingasumof7?_____ Whatistherelativefrequencyofhavingasumof11?_____ Frequency Whatistherelativefrequencyofhavingasumof7or11?_____ Theevents“asumof7”and“asumof11”are____________________________ Theorem(ProbabilityoftheUnionofMutuallyExclusiveEvents) Activity2:Writethesumof2sixsideddice.Whichsumsareprime? Refertodicesamplespaceandfindtheprobabilityofeachevent: Event 2 3 4 5 6 7 Probability Event 8 9 10 11 12 Probability Findtheprobabilityofeachprimenumberandaddthemtofindtheprobabilitythat thesumoftwodiceisaprimenumber. OverlappingEvents TheintersectionofsetsAandBiscalledthe________________andiswrittenasA____B. ThesetsofAandBarenotmutuallyexclusiveandthereforehaveoutcomesthat ____________________. Ex1:Supposeatahighschool,298studentsstudyonlyFrench,onlySpanish,or bothlanguages.Theschoolreports115studentsstudyFrenchand209students studySpanish,butbecause115and209>298,theremustbestudentswhostudy bothlanguages.Howmanystudentsstudyboth? N(F)= N(S)= N(FÈS)= N(FÇS)= AdditionCountingPrinciple(GeneralForm) Theorem(ProbabilityoftheUnionofEvents,GeneralForm) Ex2:Apairofsix-sideddiceisthrown.Ifthedicearefair,whatistheprobability thatthediceshowdoublesorasumlessthan10? P(doubles)=______ P(sumlessthan10)=________ P(doubleorsum<10)= P(doublesand<10)=______ ComplementaryEvents–eventsthataremutuallyexclusiveandtheirunionisthe entiresamplespace.ThecomplementofeventAiscalled___________. IfAandBarecomplementary,thenP(A)+P(B)=1 Theorem(ProbabilityofComplements) Ex3:Refertothe298studentsstudyinglanguageinexample1.Ifastudentis selectedatrandom,whatistheprobabilitythatthestudentisnotstudyingboth languagesatthesametime? 6.3CountingStringswithReplacement TreeDiagram-Atravelcompanyofferspackagevacationswithchoiceofeconomy orbusinessclassflights,and3optionsforaccommodations(3-star,4-star,or5star).Drawatreediagramtorepresentthedifferentpossibilities. 5-star Bussiness 4-star 3-star Vacation 5-star Economy Howmanydifferentpossibilitiesarethere?______ 4-star 3-star Now,they’vedecidedtoadvertisethateachvacationcomeswithatheme (adventure,sports,beaches,shopping,sights). Drawanothertreediagramandlistthenumberofpossibilities. MultiplicationCountingPrinciple AandBarefinitesets.ThenumberofwaystochooseoneelementfromAand oneelementfromBareN(A)___N(B) Canextendtomorethantwosets.ChoosingoneelementfromsetA1,oneelement fromA2,...andoneelementfromAkisN(A1)xN(A2)x...xN(Ak) Ex1:Apopulargameshowfeaturesaspinnerdivided into24congruentsectorsandnumberedlikethewheel shown.Thespinnercannotstoponaboundaryline.You spinittwice.DescribethesamplespaceSforthis experiment,anddeterminethenumberofelementsinS. Whatistheprobabilityofeachoutcome? Strings A____________isanorderedlistofsymbols.Thenumberofsymbolsinastringisthe ________________ofthestring. Ex2:Ona28questionmultiple-choicetest,eachquestionhas5choices. a) Howmanypossiblecompletedanswersheetsarethere? b) Ifyouguessrandomlyoneachquestion,whatistheprobabilityof answeringall28questionscorrectly? Thereare_____possiblestrings.Theseare____________________________________because theanswers/symbolscanbeusedoverandover. Theorem(StringswithReplacement) LetSbeasetwithnelements.Thentherearenkpossiblestringswith replacementoflengthkwithelementsfromS. Ex3:Inacertainstate,licenseplateshavetwoletterfollowedby4digitsfrom0to 9.Howmanylicenseplatesarepossible? Thereare____letterssothereare_____stringsof2letters. Thereare____digits,sothereare______stringsof4digits. Sothereare_____x______=____________possiblelicenseplates. IndependentEvents EventsAandBareindependenteventsifandonlyif Ex4:Thespinnershownisusedinacarnivalgame.Itis assumedtobefair,sothespinnerhasthesameprobabilityof landingineachsector.Thegameconsistsoftwospins. a) Youwinifthefirstspinstopsonanevennumberandthe secondspinstopsonamultipleof3.Whatistheprobability ofwinning? b)IfeventBwerechangedtobethesumofbothspinsisgreaterthan8,showthat theeventsAandBaredependent. Thereare____outcomesinwhichthesumofbothspinsisgreaterthan8.N(B)=____ andP(B)=_____________________ Thereare____outcomesinwhichboththefirstspinisevenandthesumofthespins isgreaterthan8. ThusN(AÇB)=_____andP(AÇB)=_________________.TheeventsAandBare _________________becauseP(A)xP(B)=______________________ 6.4CountingStringswithoutReplacement Ex1:ThePac-12athleticconferenceconsistsof12teams.Youwanttopredict whichteamwithfinishfirst,second,andthirdinaparticularsport.Howmany differentpredictionsarepossible? Anarrangementofteams,objects,orsymbolswithoutreplacementiscalleda permutationofthoseobjects.Foranypositiveintegersnandr,thenumberof permutationsofnobjectstakenratatimeisthenumberofstringsoflengthrofn symbolswithoutreplacement. nPr=n(n-1)(n-2)...(n-r+1)= )! )+, ! Ex2:Howmanydifferentsix-letterstringscanbeformedfromsixlettersinthe wordPALINDROMEwithoutreplacement? PermutationsofnObjectsTakennatatTime nPn=n! Ex3:HowmanypossiblerankingsofallPac-12teamsarepossible? 6.5ContingencyTables Ex1:Thetabletotherightliststhe numberofpassengersandcrewwho survivedanddiedinthesinkingof theTitanic. a) OutofallpeopleontheTitanic,whatpercentsurvived? b) Findthepercentofpassengersinfirstclasswhosurvived? c) Findthepercentofpassengerswhosurvivedthatwereinfirstclass? Ex2:A2001studybytheUT SouthwesternMedicalCenter examined626patientstoseeifthere wasaconnectionbetweengettingatattooandinfectionwithHepatitisC.The resultsareinthetable. a) Addrowandcolumntotalstothetable HasHepatitisC NoHepatitisC Totals Tattooin Commercial 17 35 Tattoo Elsewhere 8 53 NoTattoo Totals 18 495 b) Whatdoesthetotalofthethirdcolumnrepresent? c) Whatdoesthetotalofthesecondrowrepresent? d) Accordingtothisdata,issomeonewithatattoodoneinacommercialparlor moreorlesslikelytohaveHepatitisCthansomeonewithatattoodone elsewhere? e) Giveatleastonereasonwhytheresultinpartdmightnotreflectthesafety ofeachkindoftattoo. 6.6ConditionalProbability Whatistheprobabilitythatarandomlyselectedpassengersurvivedgiventhatthe passengerwasinsecondclass? P(BgivenA)= -(.∩0) -(.) = 1(2∩3) 1(4) 1(2) 1(4) = 5(.∩0) 5 . DefinitionofConditionalProbability:P(B|A)= Ex1:Anarticleinamedicaljournalreportedthat,whenpeoplegototheirdoctor withasorethroatandthinktheymighthavestrepthroat,only30%actuallyhave strepthroat.Itnotedthatacurrenttestforstrepthroatwas80%accurateifyou havestrepthroatand90%accurateifyoudonot.Whatistheprobabilitythata personwhoreceivesapositiveresultfromthistestdoesnothavestrepthroat? Positivetestresult=0.24and0.07=0.31 Doesnothavestrepthroat=0.07 P(doesnothavestrep|positivetestresult)=.07/(.31)=23% Ex2:Supposeallpatientsaretestedforaseriousdiseasethatisestimatedtobe foundin0.5%ofpeople.Supposealsothatthetestaccuratelyspotsthedisease 98%ofthetimeandaccuratelyindicatesnodisease95%ofthetime.Whatisthe probabilitythatanegativeresultisafalsenegative? LetD=positivedisease A NotA Total LetA=testspositive D NotD Total 6.8Two“Laws,”butOnlyOneisValid Expectedvs.ObservedCounts Ifanoutcomeinanexperimenthasprobabilityp,theninntrialsoftheexperiment, theexpectedcountoftheoutcomeisnp. Ifaneventcontainsmanyoutcomes,thentheexpectedcountofaneventisthesum oftheexpectedcountsoftheoutcomes. Ex1: a) Acurrentestimatefortheproportionofleft-handersinthepopulationsis 9%.Whatistheexpectedcountofleft-handersinaclassroomof36 students? b) Supposeawetseasonis125dayslongandthereisan85%chanceofrainof thosedays.Thedryseasonis240dayslongandthereisa10%chanceof rainonthosedays.Whatistheexpectednumberofdaysofraininayear? Theexpectedcounttellswhatwillhappenin_______________________. Ex2:Dr.Kerrichtossedacoin10,000timesandobserved5067heads. a) Whatwastheexpectednumberofheads? b) Findthedifferencebetweentheobservedandexpectednumbersofheads. c) Whatwastherelativefrequencyofheads? d) Whatwasthedifferencebetweentherelativefrequencyandtheprobability ofheads? LawofLargeNumbers Therelativefrequencygetscloserandclosertothe_________________asthenumberof ________________increases. 6.9TheChi-SquareTest Chi-squarestatisticcanhelpyoudeterminewhethercertainresultsaredueto chancevariationorwheretheyindicatethatthehypothesisiswrong. Chi-Squaredstatistic:𝝌𝟐 = ai= ei= Ex1:Totestifthecoinisfair, a) computethechi-squarestatisticforthecointhatcameupheads43timesin 50tosses Observedfrequency Expectedfrequency 𝒂𝒊 − 𝒆 𝒊 𝟐 𝒆𝒊 𝝌𝟐 = Outcome1-heads Outcome2–tails b) computethechi-squarestatisticforthecointhatcameupheads30timesin 50tosses Outcome1-heads Outcome2–tails Observedfrequency Expectedfrequency 𝟐 𝒂𝒊 − 𝒆 𝒊 𝒆𝒊 𝟐 𝝌 = SignificanceLevelandtheChi-SquareTable Chi-Squaretablesallow comparisonofcalculatedchisquaretocriticalprobabilities (significancelevel)giventhe numberofoutcomesn–1(degrees offreedom). Ifachi-squarevaluefortheoriginal experimentis__________thanthechi-squarevalueinthetableataparticular significancelevel,thenwe____________thehypothesis. Ifachi-squarevaluefortheoriginalexperimentis_______thanthechi-squarevalue inthetableataparticularsignificancelevel,thenthereis_______________________to rejectthehypothesis. MorethanTwoOutcomes Whentherearemorethantwooutcomestoanexperiment,calculatingprobabilities canbetediousorimpossible,sosimulatingthedistributionofc2valuesisvery helpful. Activity: Wasthenumberofsurvivorssounequalbyclassthatitisunlikelytohavehappened bychance? Passengers Survived Died Totals Percent Expected# Survivors Contribution toChi-square First 203 122 325 Second 118 167 285 Third 178 528 706 Crew 212 673 885 Total 711 1490 2201