Download Lesson 9: Radicals and Conjugates

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Vincent's theorem wikipedia , lookup

Location arithmetic wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Algebra wikipedia , lookup

Pythagorean theorem wikipedia , lookup

Addition wikipedia , lookup

Factorization wikipedia , lookup

Secondary School Mathematics Curriculum Improvement Study wikipedia , lookup

Elementary mathematics wikipedia , lookup

Transcript
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Lesson 9: Radicals and Conjugates
Student Outcomes

Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or
cube root) of their sum.

Students convert expressions to simplest radical form.

Students understand that the product of conjugate radicals can be viewed as the difference of two squares.
Lesson Notes
Because this lesson deals with radicals, it might seem out of place amid other lessons on
polynomials. A major theme, however, is the parallelism between the product of
conjugate radicals and the difference of two squares. There is also parallelism between
taking the square root or cube root of a sum and taking the square of a sum; both give rise
to an error sometimes called the freshman’s dream or the illusion of linearity. If students
are not careful, they may easily conclude that (π‘₯ + 𝑦)𝑛 and π‘₯ 𝑛 + 𝑦 𝑛 are equivalent
expressions for all 𝑛 β‰₯ 0, when this is only true for 𝑛 = 1. Additionally, this work with
radicals prepares students for later work with radical expressions in Module 3.
Throughout this lesson, students employ MP.7, as they see complicated expressions as
being composed of simpler ones. Additionally, the Opening Exercise offers further
practice in making a conjecture (MP.3).
Classwork
Scaffolding:
If necessary, remind students
3
that √2 and βˆ’ √4 are irrational
numbers. They cannot be
𝑝
written in the form for
π‘ž
integers 𝑝 and π‘ž. They are
numbers, however, and, just
3
like √4 and βˆ’ √64, can be
found on a number line. On
the number line, √2 = 1.414…
is just to the right of 1.4, and
3
βˆ’ √4 = βˆ’1.5874… is just to
the left of βˆ’1.587.
Opening Exercise (3 minutes)
The Opening Exercise is designed to show students that they need to be cautious when working with radicals. The
multiplication and division operations combine with radicals in a predictable way, but the addition and subtraction
operations do not.
The square root of a product is the product of the two square roots. For example,
√4 βˆ™ 9 = √2 βˆ™ 2 βˆ™ 3 βˆ™ 3
= √6 βˆ™ 6
=6
= 2βˆ™3
= √4 βˆ™ √9.
Similarly, the square root of a quotient is the quotient of the two square roots:
25
√
16
5
√25
4
√16
= =
. And the same holds
true for multiplication and division with cube roots, but not for addition or subtraction with square or cube roots.
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
101
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Begin by posing the following question for students to work on in groups.
Scaffolding:
Opening Exercise
If necessary, circulate to help
students get started by
suggesting that they substitute
numerical values for π‘Ž and 𝑏.
Perfect squares like 1 and 4 are
good values to start with when
square roots are in the
expression.
Which of these statements are true for all 𝒂, 𝒃 > 𝟎? Explain your conjecture.
i.
ii.
iii.
𝟐(𝒂 + 𝒃) = πŸπ’‚ + πŸπ’ƒ
𝒂+𝒃
𝟐
=
𝒂
𝟐
+
𝒃
𝟐
βˆšπ’‚ + 𝒃 = βˆšπ’‚ + βˆšπ’ƒ
Discussion (3 minutes)
Students should be able to show that the first two equations are true for all π‘Ž and 𝑏, and they should be able to find
values of π‘Ž and 𝑏 for which the third equation is not true. (In fact, it is always false, as students will show in the Problem
Set.)

Can you provide cases for which the third equation is not true? (Remind them that a single counterexample is
sufficient to make an equation untrue in general.)
οƒΊ
Students should give examples such as √9 + √16 = 3 + 4 = 7, but √9 + 16 = √25 = 5.
Point out that just as they have learned (in Lesson 2, if not before) that the square of (π‘₯ + 𝑦) is not equal to the sum of
π‘₯ 2 and 𝑦 2 (for π‘₯, 𝑦 β‰  0), so it is also true that the square root of (π‘₯ + 𝑦) is not equal to the sum of the square roots of
π‘₯ and 𝑦 (for π‘₯, 𝑦 > 0). Similarly, the cube root of (π‘₯ + 𝑦) is not equal to the sum of the cube roots of π‘₯ and 𝑦
(for π‘₯, 𝑦 β‰  0).
Example 1 (2 minutes)
Explain to students that an expression is in simplest radical form when the radicand (the
expression under the radical sign) has no factor that can be raised to a power greater than
or equal to the index (either 2 or 3), and there is no radical in the denominator. Present
the following example.
Example 1
Express βˆšπŸ“πŸŽ βˆ’ βˆšπŸπŸ– + βˆšπŸ– in simplest radical form and combine like terms.
Scaffolding:
If necessary, ask students
about expressions that are
easier to express in simplest
radical form, such as:
√8
βˆšπŸ“πŸŽ = βˆšπŸπŸ“ βˆ™ 𝟐 = βˆšπŸπŸ“ βˆ™ √𝟐 = πŸ“βˆšπŸ
√6
βˆšπŸπŸ– = βˆšπŸ— βˆ™ 𝟐 = βˆšπŸ— βˆ™ √𝟐 = πŸ‘βˆšπŸ
√18
βˆšπŸ– = βˆšπŸ’ βˆ™ 𝟐 = βˆšπŸ’ βˆ™ √𝟐 = 𝟐√𝟐
√20
Therefore, βˆšπŸ“πŸŽ βˆ’ βˆšπŸπŸ– + βˆšπŸ– = πŸ“βˆšπŸ βˆ’ πŸ‘βˆšπŸ + 𝟐√𝟐 = πŸ’βˆšπŸ.
√20 + √8
√20 βˆ’ √18.
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
102
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Exercises 1–5 (8 minutes)
The following exercises make use of the rules for multiplying and dividing radicals.
Express each expression in simplest radical form and combine like terms.
Scaffolding:
Circulate to make sure that
students understand that they
are looking for perfect square
factors when the index is 2 and
perfect cube factors when the
index is 3. Remind students
that the cubes of the first
counting numbers are 1, 8, 27,
64, and 125.
Exercises 1–5
𝟏
πŸ’
2.
πŸ—
πŸ’
√ + √ βˆ’ βˆšπŸ’πŸ“
1.
√𝟐 (βˆšπŸ‘ βˆ’ √𝟐)
βˆšπŸ” βˆ’ 𝟐
𝟐 βˆ’ πŸ‘βˆšπŸ“
√
3.
πŸ‘
πŸ–
βˆšπŸ‘
βˆšπŸ–
4.
=
βˆšπŸ”
βˆšπŸπŸ”
=
πŸ‘
√
πŸ“
πŸ‘πŸ
πŸ‘
βˆšπŸ“
βˆšπŸ”
πŸ’
πŸ‘
βˆšπŸ‘πŸ
πŸ‘
=
√𝟏𝟎
πŸ‘
βˆšπŸ”πŸ’
πŸ‘
=
√𝟏𝟎
πŸ’
πŸ‘
βˆšπŸπŸ”π’™πŸ“
5.
πŸ‘
πŸ‘
πŸ‘
βˆšπŸ–π’™πŸ‘ βˆ™ βˆšπŸπ’™πŸ = πŸπ’™ βˆšπŸπ’™πŸ
In the example and exercises above, we repeatedly used the following properties of radicals (write the following
statements on the board).
βˆšπ‘Ž βˆ™ βˆšπ‘ = βˆšπ‘Žπ‘
3
βˆšπ‘Ž
3
βˆšπ‘

=
3
3
βˆšπ‘Ž β‹… βˆšπ‘ = βˆšπ‘Žπ‘
π‘Ž
βˆšπ‘Ž
βˆšπ‘
3
βˆšπ‘
=
3
π‘Ž
βˆšπ‘
When do these identities make sense?
οƒΊ
Students should answer that the identities make sense for the square roots whenever π‘Ž β‰₯ 0 and 𝑏 β‰₯ 0,
with 𝑏 β‰  0 when 𝑏 is a denominator. They make sense for the cube roots for all π‘Ž and 𝑏, with 𝑏 β‰  0
when 𝑏 is a denominator.
Example 2 (8 minutes)
This example is designed to introduce conjugates and their properties.
Example 2
Multiply and combine like terms. Then explain what you notice about the two different results.
(βˆšπŸ‘ + √𝟐) (βˆšπŸ‘ + √𝟐)
(βˆšπŸ‘ + √𝟐) (βˆšπŸ‘ βˆ’ √𝟐)
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
103
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Solution (with teacher comments and a question):
The first product is √3 βˆ™ √3 + 2(√3 βˆ™ √2) + √2 βˆ™ √2 = 5 + 2√6.
The second product is √3 βˆ™ √3 βˆ’ (√3 βˆ™ √2) + (√3 βˆ™ √2) βˆ’ √2 βˆ™ √2 = 3 βˆ’ 2 = 1.
The first product is an irrational number; the second is an integer.
The second product has the nice feature that the radicals have been eliminated. In that
case, the two factors are given a special name: two binomials of the form βˆšπ‘Ž + βˆšπ‘ and
βˆšπ‘Ž βˆ’ βˆšπ‘ are called conjugate radicals:
βˆšπ‘Ž + βˆšπ‘ is the conjugate of βˆšπ‘Ž βˆ’ βˆšπ‘, and
Scaffolding:
Students may have trouble
with the word conjugate. If so,
have them fill out the following
diagram.
βˆšπ‘Ž βˆ’ βˆšπ‘ is the conjugate of βˆšπ‘Ž + βˆšπ‘.
More generally, for any expression in two terms, at least one of which contains a radical,
its conjugate is an expression consisting of the same two terms but with the opposite sign
separating the terms. For example, the conjugate of 2 βˆ’ √3 is 2 + √3, and the conjugate
3
3
of √5 + √3 is √5 βˆ’ √3.

What polynomial identity is suggested by the product of two conjugates?
οƒΊ
Students should answer that it looks like the difference of two squares.
The product of two conjugates has the form of the difference of squares:
(π‘₯ + 𝑦)(π‘₯ βˆ’ 𝑦) = π‘₯ 2 βˆ’ 𝑦 2 .
The following exercise focuses on the use of conjugates.
Exercise 6 (5 minutes)
Exercise 6
6.

Find the product of the conjugate radicals.
(βˆšπŸ“ + βˆšπŸ‘)(βˆšπŸ“ βˆ’ βˆšπŸ‘)
πŸ“βˆ’πŸ‘ =𝟐
(πŸ• + √𝟐)(πŸ• βˆ’ √𝟐)
πŸ’πŸ— βˆ’ 𝟐 = πŸ’πŸ•
(βˆšπŸ“ + 𝟐)(βˆšπŸ“ βˆ’ 𝟐)
πŸ“βˆ’πŸ’ =𝟏
In each case in Exercise 6, is the result the difference of two squares?
οƒΊ
2
2
2
2
Yes. For example, if we think of 5 as (√5) and 3 as (√3) , then 5 βˆ’ 3 = (√5) βˆ’ (√3) .
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
104
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Example 3 (6 minutes)
This example is designed to show how division by a radical can be reduced to division by an integer by multiplication by
the conjugate radical in the numerator and denominator.
Example 3
Write
βˆšπŸ‘
in simplest radical form.
πŸ“βˆ’πŸβˆšπŸ‘
βˆšπŸ‘
πŸ“ βˆ’ πŸβˆšπŸ‘
=
πŸ“ + πŸβˆšπŸ‘ βˆšπŸ‘(πŸ“ + πŸβˆšπŸ‘) πŸ“βˆšπŸ‘ + πŸ”
βˆšπŸ‘
βˆ™
=
=
πŸπŸ“ βˆ’ 𝟏𝟐
πŸπŸ‘
πŸ“ βˆ’ πŸβˆšπŸ‘ πŸ“ + πŸβˆšπŸ‘
The process for simplifying an expression with a radical in the denominator has two steps:
1.
Multiply the numerator and denominator of the fraction by the conjugate of the denominator.
2.
Simplify the resulting expression.
Closing (5 minutes)

Radical expressions with the same index and same radicand combine in the same way as like terms in a
polynomial when performing addition and subtraction.
3
3
3
For example, √3 + √2 + 5 √3 βˆ’ √7 + √3 + √7 + 3√2 = 6 √3 + 4√2 + √3.

Simplifying an expression with a radical in the denominator relies on an application of the difference of squares
formula.
οƒΊ
For example, to simplify
3
, we treat the denominator like a binomial.
√2+√3
Substitute √2 = π‘₯ and √3 = 𝑦, and then
3
√2 + √3
=
3
3
π‘₯βˆ’π‘¦
3(π‘₯ βˆ’ 𝑦)
=
βˆ™
= 2
.
π‘₯+𝑦 π‘₯+𝑦 π‘₯βˆ’π‘¦
π‘₯ βˆ’ 𝑦2
Since π‘₯ = √2 and 𝑦 = √3, π‘₯ 2 βˆ’ 𝑦 2 is an integer. In this case, π‘₯ 2 βˆ’ 𝑦 2 = βˆ’1.
3
βˆ™
√2 βˆ’ √3
√2 + √3 √2 βˆ’ √3
Lesson 9:
=
3(√2 βˆ’ √3)
= βˆ’3(√2 βˆ’ √3)
2βˆ’3
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
105
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Ask students to summarize the important parts of the lesson, either in writing, to a partner, or as a class. Use this as an
opportunity to informally assess understanding of the lesson. The following are some important summary elements.
Lesson Summary

For real numbers 𝒂 β‰₯ 𝟎 and 𝒃 β‰₯ 𝟎, where 𝒃 β‰  𝟎 when 𝒃 is a denominator,
𝒂
βˆšπ’‚
βˆšπ’‚π’ƒ = βˆšπ’‚ β‹… βˆšπ’ƒ and βˆšπ’ƒ = √ .
𝒃

For real numbers 𝒂 β‰₯ 𝟎 and 𝒃 β‰₯ 𝟎, where 𝒃 β‰  𝟎 when 𝒃 is a denominator,
πŸ‘
πŸ‘
πŸ‘
𝒂
πŸ‘
βˆšπ’‚π’ƒ = βˆšπ’‚ β‹… βˆšπ’ƒ and βˆšπ’ƒ =

πŸ‘π’‚
√
πŸ‘βˆš
.
𝒃
Two binomials of the form βˆšπ’‚ + βˆšπ’ƒ and βˆšπ’‚ βˆ’ βˆšπ’ƒ are called conjugate radicals:
βˆšπ’‚ + βˆšπ’ƒ is the conjugate of βˆšπ’‚ βˆ’ βˆšπ’ƒ, and
βˆšπ’‚ βˆ’ βˆšπ’ƒ is the conjugate of βˆšπ’‚ + βˆšπ’ƒ.
For example, the conjugate of 𝟐 βˆ’ βˆšπŸ‘ is 𝟐 + βˆšπŸ‘.

To rewrite an expression with a denominator of the form βˆšπ’‚ + βˆšπ’ƒ in simplest radical form, multiply the
numerator and denominator by the conjugate βˆšπ’‚ βˆ’ βˆšπ’ƒ and combine like terms.
Exit Ticket (5 minutes)
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
106
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Name
Date
Lesson 9: Radicals and Conjugates
Exit Ticket
1.
Rewrite each of the following radicals as a rational number or in simplest radical form.
a.
b.
c.
2.
3
√40
√242
Find the conjugate of each of the following radical expressions.
a.
√5 + √11
b.
9 βˆ’ √11
c.
3.
√49
3
√3 + 1.5
Rewrite each of the following expressions as a rational number or in simplest radical form.
a.
√3(√3 βˆ’ 1)
b.
(5 + √3)
c.
(10 + √11)(10 βˆ’ √11)
2
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
107
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
Exit Ticket Sample Solution
1.
Rewrite each of the following radicals as a rational number or in simplest radical form.
a.
b.
c.
2.
πŸ‘
πŸ‘
βˆšπŸ’πŸŽ
πŸβˆšπŸ“
βˆšπŸπŸ’πŸ
𝟏𝟏√𝟐
Find the conjugate of each of the following radical expressions.
a.
βˆšπŸ“ + √𝟏𝟏
b.
πŸ— βˆ’ √𝟏𝟏
πŸ— + √𝟏𝟏
πŸ‘
πŸ‘
c.
3.
πŸ•
βˆšπŸ’πŸ—
βˆšπŸ“ βˆ’ √𝟏𝟏
βˆšπŸ‘ + 𝟏. πŸ“
βˆšπŸ‘ βˆ’ 𝟏. πŸ“
Rewrite each of the following expressions as a rational number or in simplest radical form.
a.
βˆšπŸ‘ (βˆšπŸ‘ βˆ’ 𝟏)
b.
(πŸ“ + βˆšπŸ‘)
c.
(𝟏𝟎 + √𝟏𝟏)(𝟏𝟎 βˆ’ √𝟏𝟏)
πŸ‘ βˆ’ βˆšπŸ‘
𝟐
πŸπŸ– + πŸπŸŽβˆšπŸ‘
πŸ–πŸ—
Problem Set Sample Solutions
Problem 10 is different from the others and may require some discussion and explanation before students work on it.
Consider explaining that the converse of an if–then theorem is obtained by interchanging the clauses introduced by if
and then, and that the converse of such a theorem is not necessarily a valid theorem. The converse of the Pythagorean
theorem will be important for the development of a formula leading to Pythagorean triples in Lesson 10.
1.
Express each of the following as a rational number or in simplest radical form. Assume that the symbols 𝒂, 𝒃, and 𝒙
represent positive numbers.
a.
βˆšπŸ‘πŸ”
πŸ”
b.
βˆšπŸ•πŸ
πŸ”βˆšπŸ
c.
βˆšπŸπŸ–
πŸ‘βˆšπŸ
d.
βˆšπŸ—π’™πŸ‘
πŸ‘π’™βˆšπ’™
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
108
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
e.
f.
g.
h.
2.
βˆšπŸπŸ•π’™πŸ
πŸ‘π’™βˆšπŸ‘
πŸ‘
βˆšπŸπŸ”
𝟐√𝟐
πŸ‘
βˆšπŸπŸ’π’‚
πŸβˆšπŸ‘π’‚
βˆšπŸ—π’‚πŸ + πŸ—π’ƒπŸ
πŸ‘βˆšπ’‚πŸ + π’ƒπŸ
πŸ‘
πŸ‘
Express each of the following in simplest radical form, combining terms where possible.
a.
βˆšπŸπŸ“ + βˆšπŸ’πŸ“ βˆ’ √𝟐𝟎
b.
πŸ‘βˆšπŸ‘ βˆ’ √ + √
c.
d.
πŸ‘
πŸ’
πŸ‘
πŸ“ + βˆšπŸ“
πŸπŸ•βˆšπŸ‘
𝟏
πŸ‘
πŸ‘
πŸ‘
πŸ”
πŸ‘
πŸπŸ‘ √𝟐
𝟏
βˆšπŸ“πŸ’ βˆ’ βˆšπŸ– + πŸ•βˆšπŸ’
πŸ‘
πŸ“
πŸ–
πŸ‘
√ + πŸ‘βˆšπŸ’πŸŽ βˆ’ √
𝟐
βˆ’πŸ
πŸ‘
πŸ“ βˆšπŸ“
πŸ–
πŸ—
𝟐
πŸ‘
βˆ’
𝟐 βˆšπŸ‘
πŸ‘
3.
Evaluate βˆšπ’™πŸ βˆ’ π’šπŸ when 𝒙 = πŸ‘πŸ‘ and 𝐲 = πŸπŸ“.
πŸπŸβˆšπŸ”
4.
Evaluate βˆšπ’™πŸ + π’šπŸ when 𝒙 = 𝟐𝟎 and π’š = 𝟏𝟎.
πŸπŸŽβˆšπŸ“
5.
Express each of the following as a rational expression or in simplest radical form. Assume that the symbols 𝒙 and π’š
represent positive numbers.
a.
βˆšπŸ‘(βˆšπŸ• βˆ’ βˆšπŸ‘)
√𝟐𝟏 βˆ’ πŸ‘
b.
(πŸ‘ + √𝟐)
𝟏𝟏 + πŸ”βˆšπŸ
c.
(𝟐 + βˆšπŸ‘)(𝟐 βˆ’ βˆšπŸ‘)
𝟏
d.
(𝟐 + πŸβˆšπŸ“)(𝟐 βˆ’ πŸβˆšπŸ“)
βˆ’πŸπŸ”
e.
(βˆšπŸ• βˆ’ πŸ‘)(βˆšπŸ• + πŸ‘)
βˆ’πŸ
f.
(πŸ‘βˆšπŸ + βˆšπŸ•)(πŸ‘βˆšπŸ βˆ’ βˆšπŸ•)
𝟏𝟏
g.
(𝒙 βˆ’ βˆšπŸ‘)(𝒙 + βˆšπŸ‘)
π’™πŸ βˆ’ πŸ‘
h.
(πŸπ’™βˆšπŸ + π’š)(πŸπ’™βˆšπŸ βˆ’ π’š)
πŸ–π’™πŸ βˆ’ π’šπŸ
𝟐
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
109
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 9
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
ALGEBRA II
6.
7.
Simplify each of the following quotients as far as possible.
a.
(√𝟐𝟏 βˆ’ βˆšπŸ‘) ÷ βˆšπŸ‘
βˆšπŸ• βˆ’ 𝟏
b.
(βˆšπŸ“ + πŸ’) ÷ (βˆšπŸ“ + 𝟏)
𝟏
(𝟏 + πŸ‘βˆšπŸ“)
πŸ’
c.
(πŸ‘ βˆ’ √𝟐) ÷ (πŸ‘βˆšπŸ βˆ’ πŸ“)
𝟏
βˆ’ (πŸ— + πŸ’βˆšπŸ)
πŸ•
d.
(πŸβˆšπŸ“ βˆ’ βˆšπŸ‘) ÷ (πŸ‘βˆšπŸ“ βˆ’ πŸ’βˆšπŸ)
𝟏
(πŸ‘πŸŽ βˆ’ πŸ‘βˆšπŸπŸ“ + πŸ–βˆšπŸπŸŽ βˆ’ πŸ’βˆšπŸ”)
πŸπŸ‘
𝟏
𝒙
If 𝒙 = 𝟐 + βˆšπŸ‘, show that 𝒙 + has a rational value.
𝒙+
8.
𝟏
=πŸ’
𝒙
Evaluate πŸ“π’™πŸ βˆ’ πŸπŸŽπ’™ when the value of 𝒙 is
πŸβˆ’βˆšπŸ“
𝟐
.
πŸ“
πŸ’
9.
πŸ’
πŸ’
Write the factors of π’‚πŸ’ βˆ’ π’ƒπŸ’ . Express (βˆšπŸ‘ + √𝟐) βˆ’ (βˆšπŸ‘ βˆ’ √𝟐) in a simpler form.
Factors: (π’‚πŸ + π’ƒπŸ )(𝒂 + 𝒃)(𝒂 βˆ’ 𝒃)
Simplified form: πŸ’πŸŽβˆšπŸ”
10. The converse of the Pythagorean theorem is also a theorem: If the square of one side of a triangle is equal to the
sum of the squares of the other two sides, then the triangle is a right triangle.
Use the converse of the Pythagorean theorem to show that for 𝑨, 𝑩, π‘ͺ > 𝟎, if 𝑨 + 𝑩 = π‘ͺ, then βˆšπ‘¨ + βˆšπ‘© > √π‘ͺ, so
that βˆšπ‘¨ + βˆšπ‘© > βˆšπ‘¨ + 𝑩.
Solution 1: Since 𝑨, 𝑩, π‘ͺ > 𝟎, we can interpret these quantities as the areas of three squares whose sides have
lengths βˆšπ‘¨, βˆšπ‘©, and √π‘ͺ. Because 𝑨 + 𝑩 = π‘ͺ, then by the converse of the Pythagorean theorem, βˆšπ‘¨, βˆšπ‘©, and √π‘ͺ
are the lengths of the legs and hypotenuse of a right triangle. In a triangle, the sum of any two sides is greater than
the third side. Therefore, βˆšπ‘¨ + βˆšπ‘© > √π‘ͺ, so βˆšπ‘¨ + βˆšπ‘© > βˆšπ‘¨ + 𝑩.
Solution 2: Since 𝑨, B, π‘ͺ > 𝟎, we can interpret these quantities as the areas of three squares whose sides have
lengths βˆšπ‘¨, βˆšπ‘©, and √π‘ͺ. Because 𝑨 + 𝑩 = π‘ͺ, then by the converse of the Pythagorean theorem, βˆšπ‘¨ = 𝒂, βˆšπ‘© = 𝒃,
and 𝒄 = √π‘ͺ are the lengths of the legs and hypotenuse of a right triangle, so 𝒂, 𝒃, 𝒄 > 𝟎. Therefore, πŸπ’‚π’ƒ > 𝟎.
Adding equal positive quantities to each side of that inequality, we get π’‚πŸ + π’ƒπŸ + πŸπ’‚π’ƒ > π’„πŸ , which we can rewrite
as (𝒂 + 𝒃)𝟐 > π’„πŸ . Taking the positive square root of each side, we get 𝒂 + 𝒃 > 𝒄, or equivalently, βˆšπ‘¨ + βˆšπ‘© > √π‘ͺ.
We then have βˆšπ‘¨ + βˆšπ‘© > βˆšπ‘¨ + 𝑩.
Lesson 9:
Radicals and Conjugates
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG II-M1-TE-1.3.0-07.2015
110
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.