Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name Date Class. (-L Reteach Factoring by GCF The Distributive Property states: a(b + c) = ab + ac Factoring by GCF reverses the Distributive Property: ab + ac = a(b + c) Factor 12x3 + 21 x2 + 15x. Check your answer. Step 1: Find the GCF oi all the terms in the polynomial. The factors of 12x3 are: 1, 2, 3, 4, 6, 12, x, x, x ' The factors of 21 x2 are: 1, 3, 7, 21, x, x The GCF is 3x. The factors of 15xare: 1, 3, 5, 15, x Step 2: Write terms as products using the GCF. 12x 3 + 21x 2 + 15x (3x)4x2 + (3x)7x + (3x)5 Step 3: Use the Distributive Property to factor out the GCF. 3x(4x2 + 7x+ 5) Check: 3x(4x2 + 7x + 5) = 12x3 + 21x2 + 15x / Factor 5(x - 3) + 4x(x - 3). Step 1: Find the GCF of all the terms polynomial. s i i u o iin i i the nit? [jwiyiiv-'i The factors of 5 (x - 3) are5:5, ( x - 3 ) 1 re: 4, x, (x- 3)J The factors of 4x(x - 3) are The GCF is (x-3). The terms are already written as products with the GCF. Step 2: Use the Distributive Property to factor out the GCF. (x-3)(5 + 4x) Factor each polynomial. 1. 20x2 - 15x 2. 44a2 3. 24y - 36x 5. 3a(a + 4) - 2(a + 4) 6. 4y(4y + 1) + (4y + 1) Factor each expression. 4. 5x(x+ 7) + 2(x+ 7) Copyright © by Holt, Rinehart and Winston. All rights reserved. 14 Holt Algebra 1 Name Date Class. Practice B Factoring by GCF Factor each polynomial. Check your answer. 1. 8c2 + 7c 2. 3/73 + 12n2 4. -8s4 + 20f3 - 28 5. 3. 15x5- 18x 18n-24n 6. -5m4 - 5m + 5m' 7. A ball is hit vertically into the air using a paddle at a speed of 32 ft/sec. The expression -16?2 + 327 gives the ball's height after t seconds. Factor this expression. 8. The area of Margo's laptop computer screen is 12x2 -f 3xin2. Factor this polynomial to find expressions for the dimensions of her computer screen. Factor each expression. 9. 3m(m + 5) + 4(m + 5) 10. 166Gb -3) + O b - 3 ) Factor each polynomial by grouping. 11. 2x3 + 8x2 + 3x + 12 12. 13. 10of2 - 6d+ 35d ~ 21 14. 12n3- 15. 5b4 - 1563 + 3 - b 16. /3 - 5r + 1 0 - 2 ? Copyright © by Holt, Rinehart and Winston. All rights reserved. 12 3n 10 Holt Algebra 1 Name Date Practice C Class. 1-1° Factoring by GCF Factor each polynomial. Check your answer. I. 8x4 - 2. -12ab3 + 206 3. 16/rr - 2nJ + 30m 4. 27y 4 -- 72y3 + 9y 5. -5x5 + 35x4 - 30x3 6. 16x6y+ 16x2y4 + 32x3y2 7. The expression used for finding the surface area of a cylinder is 2irr2 + 2^rh. Factor this expression. 8. The area of a hallway rug is j|x2 + ^xft 2 . Factor this polynomial to find expressions for the dimensions of the rug. Factor each expression. 10. 9nr(m + 7) + 5 ( m + 7) 9. 10(/c- 2) + 7k(k- 2) Factor each polynomial by grouping. 11. 2t3 + 6t2 + t + 3 12. 3n4 + 2n 3 - 15n- 10 13. 12a2 + 30a- 14a- 35 14. -28n2 - 14+ 10n5 + 5n3 15. 3d4 - 24b3 + 8 - b 16. 3x3 - 12x2 + 20 - 5x Copyright © by Holt, Rinehart and Winston. AH rights reserved. 13 Holt Algebra 1 LESSON 8-2 Practice A 2.) 1. x;5 2. 5; m3 3- 5; y5; 2 4. 2y*(5 + 6y) 5. 6f(-2f4 + 1) 6. 3x2(2x2 + 5x +1) 7. 5/H+8) 8. 3xand x + 8 9. (c/+2)(4Gf + 9) 10. (x-5)(12 + 7x) 11. 3n2; 12; 3; 3; (n + 3)(n2 12. (2x + 5)(x2+ 1) 13. 2/; 6; y; 2; y; y; y; 2; (y -2)(2y 2 -3) 14. (m - 3)(4m2 - 5) Practice B T/ £r 2- 1. c(8c + 7) 2. 3n2(n + 4) 3. 3x(5x4 - 6) 4. 4(-2s4 + 5^-7) 5. 6n(n5 + 3n 3 -4) 6. 5m 2 (-m 2 -m+1) 7. 16fH+2) 8. 3x and 4x + 1 9. (m + 5)(3m + 4) 10. (t>-3)(166+1) 11. (x + 4)(2x2 + 3) 12. (4n + 3)(n 2 +1) 13. (5d-3)(2tf + 7) 14. (4n - 5)(3n2 - 2) 15. (b-3)(56 3 -1) 16. (?-2)(t-S) Practice C Tiff 3 1. 4x 2 (2x 2 -3) 2. 4fa(-3ab2 + 5) 3. 2(8m2 - n3 + 15m) 4. 9/(3/-8/+1) 5. -5x 3 (x 2 -7x+6) 6. 16x2y(x4 + 3^ + 2xy 7. 2^r(r+ /i) 8. — x and 3x+ 1 9. (/f-2)(10 + 7/c) 11. (f + 3)(2<2 + 1) 10. + 7)(9m2 + 5 12. n + 2)(n 3 -5) 13. (6a-7)(2a + 5) 14. (2n 2 + 1)(5n3-14) 16. (x-4)(3x 2 -5) 15. (3b3 - 1 )(fc - 8) he original content are the responsibility of the instructor. 13 Holt McDougal Algebra 1