Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
)$67+,*+92/7$*(75$16,67256:,7&+(6
+76&
+76&
+76&
+76&
+76&
9&
'5,9(5
N9'&$
N9'&$
N9'&$
N9'&$
N9'&$
)$67
026)(7
7(&+12/2*<
5R+6
7+(502
75,**(5
FRQIRUP
+9
9
77/
*1'
1RWH 7KH VWDQGDUG ÀDQJH KRXVLQJ LV GHVLJQHG
IRUFRQYHQWLRQDOZLULQJ6SHFLDOYHUVLRQVIRU3&%
DVVHPEO\DUHDYDLODEOHIRUYROWDJHVXSWRN9
+9
&203$&76(5,(6
+76
&%
+76
5/
+76
&%
5/
+76
5/
Q
&%
5/
77/&RQWURO,QSXW9
/RJLF*URXQGDQG5HWXUQ
$X[LOLDU\6XSSO\9'&
77/)DXOW6LJQDO2XW/ )DXOW
77/,QKLELW,QSXW/ ,QKLELW
1&RURSWLRQDOXVH
1&RURSWLRQDOXVH
6FRSH
%:!*+]
7(.7521,;
'32
1RLVH)LOWHU
+93RZHU6XSSO\+9
+9
5
+
<HOORZ
%ODFN
5HG
2UDQJH
*UHHQ
*UH\
9LROHW
6XI¿FLHQWLQSXWWHUPLQDWLRQPD\EH
EHUHTXLUHGIRUORQJHUSXOVHWUDQV
PLVVLRQOLQHV!FPIW3OHDVH
PDWFKJHQHUDWRULPSHGDQFHOLQH
LPSHGDQFHWHUPLQDWLRQUHVLVWDQFH
-LWWHUOHVVWLPHPHDVXUHPHQWVUHTXLUH
SXOVHJHQHUDWRUVZLWK!9DPSOLWXGH
LQWR2KPDQGDULVHWLPHRIQV
+9UHVLVWRUVDUHQRQLQGXFWLYHPDVV
UHVLVWRUVFDSDFLWRUVDUHFHUDPLFW\SHV
:::%(+/.(&20%(+/.(86$%(+/.(%(+/.(*(50$1<
5RJRZVNLFRLO%:!0+]
FXUUHQWSUREH
5
5/
56
5IRU
,/ [,SPD[ DW
9R [9RPD[ &%
Q
&/
*URXQGFRQQHFWLRQPPLQFK
+9
+93UREH%:!0+]
+9
S
+9
N
7HVW&LUFXLW
%DVLF&LUFXLWV
&%
&,5&8,7'(6,*15(&200(1'$7,216
,Q RUGHU WR DFKLHYH WKH PLQLPXP WXUQRQ ULVH WLPH DQG WKH EHVW +9 SXOVH VKDSH DOO
OHDGVDQGFLUFXLWSDWKVVKRXOGEHRIORZHVWSRVVLEOHLQGXFWDQFH7KLVFDQEHDFKLHYHG
E\PHDQVRIYHU\ZLGHDQGVKRUWFLUFXLWWUDFNVRQWKHSULQWHGFLUFXLWERDUGLIQHFHVVDU\
LQ VHYHUDO OD\HUV PXOWL OD\HU 3&% 3DUW FRPSRQHQWV VXFK DV 56 &%3 DQG &% PXVW EH
LQGXFWDQFHIUHH DQG VKRXOG RQO\ EH FRQQHFWHG ZLWK VKRUWHVW SRVVLEOH ZLUHV FLUFXLW
WUDFNV *URXQG FRQGXFWLQJ WUDFNV LQFOXGLQJ WKH ORJLF JURXQG PXVW EH FRQQHFWHG WR D
FRPPRQ JURXQG SRLQW VWDUW\SH JURXQG ,QGXFWLRQ ORRS DUHDV RI G\QDPLFDOO\ FXUUHQW
FDUU\LQJ FLUFXLW SDWKV VKRXOG DOZD\V EH DV VPDOO DV SRVVLEOH +9 ZLULQJ DQG FRQWURO
FLUFXLWU\ VKRXOG DOZD\V EH VHSDUDWHG E\ D SURSHU GLVWDQFH )RU IXUWKHU GHVLJQ
UHFRPPHQGDWLRQVSOHDVHUHIHUWRWKHJHQHUDOLQVWUXFWLRQV
5
7KH VZLWFKHV DUH YHU\ HDV\ WR KDQGOH DQG RQO\ UHTXLUH D VLPSOH 9'& DX[LOLDU\
VXSSO\WR9'&DQGD77/FRPSDWLEOHFRQWUROVLJQDO7KHFRQWUROVLJQDOFDQEH
DQ\SRVLWLYHJRLQJSXOVHRIDWOHDVWQVGXUDWLRQDQGWRYROWVDPSOLWXGH'XHWR
WKH 6FKPLWW7ULJJHU LQSXW FKDUDFWHULVWLFV DQG WKH YHU\ KLJK VLJQDO DPSOL¿FDWLRQ QHLWKHU
WKHVZLWFKLQJEHKDYLRUQRUWKHWXUQRQULVHWLPHZLOOEHLQÀXHQFHGE\WKHZDYHVKDSHRI
WKHFRQWUROSXOVH7KHUHFRYHU\WLPHDIWHUDVZLWFKLQJF\FOHLVOHVVWKDQQVPDNLQJ
EXUVWIUHTXHQFLHVRIXSWR0+]SRVVLEOH%XUVWIUHTXHQFLHVRIHYHQXSWR0+]FDQ
EH DFKLHYHG E\ PHDQV RI WKH RSWLRQ +)% 7KH PD[LPXP FRQWLQXRXV VZLWFKLQJ
IUHTXHQF\ LV SULPDULO\ OLPLWHG E\ WKH SRZHU FDSDELOLW\ RI WKH LQWHUQDO GULYHU DQG E\ WKH
SRZHU GLVVLSDWLRQ RI WKH KLJKYROWDJH VZLWFK 6WDQGDUG VZLWFKHV ZLWKRXW RSWLRQDO
FRROLQJ DQG ZLWKRXW RSWLRQDO +)6 VXSSO\ FDQ UHDFK VHYHUDO N+] GHSHQGLQJ RQ
RSHUDWLQJ YROWDJH DQG ORDG FDSDFLWDQFH +LJKHU IUHTXHQFLHV UHTXLUH DQ DGGLWLRQDO
DX[LOLDU\VXSSO\IRUWKHLQWHUQDOGULYHUZKLFKLVFRQQHFWHGE\PHDQVRIWKHRSWLRQ+)6
7KH VZLWFK PXVW DOVR EH VXI¿FLHQWO\ FRROHG LI WKH IUHTXHQF\ GHSHQGLQJ SRZHU
GLVVLSDWLRQ H[FHHGV WKH VSHFL¿HG 3GPD[ YDOXH )RU WKH LQGLYLGXDO FRROLQJ
UHTXLUHPHQWV DUH YDULRXV FRROLQJ IHDWXUHV DYDLODEOH VXFK DV RSWLRQ &&6 FHUDPLF
FRROLQJ VXUIDFH &) FRSSHU FRROLQJ ¿QV &)&(5 FHUDPLF FRROLQJ ¿QV *&)
JURXQGHGFRROLQJÀDQJH,/&LQGLUHFWOLTXLGFRROLQJRU'/&GLUHFWOLTXLGFRROLQJ,Q
FRQQHFWLRQZLWKRSWLRQ'/&WKHFRQWLQXRXVVZLWFKLQJIUHTXHQF\FDQEHLQFUHDVHGXSWR
0+] 1HYHUWKHOHVV WKH VZLWFKHV RI WKH FRPSDFW VHULHV +76& DUH QRW SULPDULO\
GHVLJQHG IRU KLJK IUHTXHQF\ RSHUDWLRQ DQG KLJK DYHUDJH SRZHU GLVVLSDWLRQ ,I WKHVH
SDUDPHWHUVDUHWKHPDLQGHVLJQFRQFHUQWKHQWKHODUJHUVZLWFKLQJPRGXOHVRIWKH+76
VWDQGDUG VHULHV DUH UHFRPPHQGHG ZKLFK RIIHU D VLJQL¿FDQWO\ ORZHU WKHUPDO UHVLVWDQFH
ZKHQFRPELQHGZLWKWKHFRROLQJRSWLRQVPHQWLRQHGDERYH
7KH VZLWFKHV DUH HTXLSSHG ZLWK WKH QHZ LQWHOOLJHQW GULYLQJ DQG FRQWURO FLUFXLW 9&
ZKLFK SURYLGHV DFWLYH LQSXW ¿OWHULQJ VLJQDO FRQGLWLRQLQJ DX[LOLDU\ YROWDJH PRQLWRULQJ
IUHTXHQF\ OLPLWDWLRQ DQG WHPSHUDWXUH SURWHFWLRQ 7KH LQSXW ¿OWHU DOORZV DQ XQVKLHOGHG
LQSXW ZLULQJ RI DW OHDVW FP OHQJWK 8QGH¿QHG FRQWURO VLJQDOV QRLVH DQG
WUDQVLHQWVDUHXQFULWLFDOWRWKHVZLWFK7KHKLJKYROWDJH026)(7VWDFNLVDOZD\VVDIHO\
FRQWUROOHGUHJDUGOHVVWRWKHSXOVHZLGWKRUZDYHVKDSHRIWKHFRQWUROVLJQDO7KHFRQWURO
FLUFXLWKDVLQWHJUDWHGWHPSHUDWXUHWULJJHUV2QHWKHUPRWULJJHUZLWKDUHVSRQVHWLPHRI
VHFRQGV SURWHFWV WKH KLJKYROWDJH VZLWFK WZR IXUWKHU VHQVRUV ZLWK VHFRQGV
UHVSRQVHWLPHDUHSODFHGLQWKHFULWLFDODUHDVRIWKHGULYHUFLUFXLW$QLQKLELWLQSXWSLQ
/ ,QKLELWDOORZVWKHFRQQHFWLRQRIH[WHUQDOWKHUPRWULJJHUVRYHUFXUUHQWGHWHFWRUVDQG
RU FRRODQW ÀRZ GHWHFWRUV IURP OLTXLG FRROLQJ V\VWHPV 7KH RSHUDWLQJ FRQGLWLRQV DUH
LQGLFDWHG E\ WKUHH EXLOWLQ /('V ,Q FDVH RI D IDXOW DX[LOLDU\ YROWDJH 9'&
IUHTXHQF\!IPD[FDVHWHPSHUDWXUH!&DQGRU,QKLELW /RZWKHUHG/('ZLOO
LQGLFDWH DQ HUURU DQG WKH VZLWFK LV LQKLELWHG IRU DW OHDVW VHFRQGV UHVSHFWLYHO\ IRU WKH
GXUDWLRQRIWKHIDXOWFRQGLWLRQ$WWKHVDPHWLPHD77/FRPSDWLEOHIDXOWVLJQDORFFXUVDW
SLQ /RZ )DXOW ,Q FDVH RI RYHU WHPSHUDWXUH WKH VZLWFK FDQ EH ORFNHG IRU VHYHUDO
PLQXWHVGHSHQGLQJRQWKHLQGLYLGXDOFRROLQJFRQGLWLRQV$JUHHQ/('LQGLFDWHV5HDG\
IRU 2SHUDWLRQ DQG D \HOORZ /(' LQGLFDWHV WKH RQVWDWH RI WKH VZLWFK DV ZHOO DV VKRUW
FRQWURO SXOVHV ZLWK D SXOVH GXUDWLRQ GRZQ WR QV 7KH GHVLJQ FRQFHSW RI WKHVH
VZLWFKLQJPRGXOHVRIIHUVDODUJHVHOHFWLRQRIFRROLQJDQGKRXVLQJRSWLRQVDVZHOODVD
YHU\KLJKÀH[LELOLW\UHJDUGLQJWKHDGDSWLRQWRLQGLYLGXDO2(0UHTXLUHPHQWV3OHDVHUHIHU
WRWKHVHSDUDWHRSWLRQVSDJHIRUVRPHH[DPSOHVRILQGLYLGXDOVZLWFKVROXWLRQV
'(6&5,37,21
7KHKLJKYROWDJHVZLWFKHVRIWKHFRPSDFWVHULHV+76&KDYHDYDULDEOHRQWLPHDQG
DUHFRPSDUDEOHZLWKFODVVLFDOVROLGVWDWHUHOD\VWKH\DUHWXUQHGRQDVORQJDVDFRQWURO
VLJQDO LV DSSOLHG WR WKH FRQWURO LQSXW %(+/.( VROLGVWDWH VZLWFKHV DUH DFWLYHO\
FRQWUROOHGGHYLFHVQRDYDODQFKHWHFKQLTXHDQGVKRZKLJKO\UHOLDEOHDQGUHSURGXFLEOH
VZLWFKLQJEHKDYLRXUUHJDUGOHVVRIWHPSHUDWXUHYROWDJHRUORDGFRQGLWLRQ&RPSDUHGWR
FRQYHQWLRQDO KLJK YROWDJH VZLWFKLQJ HOHPHQWV VXFK DV JDV GLVFKDUJH WXEHV DQG VSDUN
JDSV %(+/.( VROLGVWDWH VZLWFKHV GR QRW VKRZ DJLQJ HIIHFWV DQG DFKLHYH OLIH WLPHV
E\VHYHUDORUGHUVRIPDJQLWXGHKLJKHUWKDQDQ\RWKHUFODVVLFDOKLJKYROWDJHVZLWFK
9$5,$%/(217,0(
*URXQGWDSDWERWWRP
5HFRPPHQGHGDV
VWDUW\SHJURXQGWDS
$OOULJKWVUHVHUYHG
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
HOUSING
FUNCTIONS
ORDERING
Specification
Symbol Condition / Comment
Maximum Operating Voltage
Maximum Isolation Voltage
Max. Housing Insulation Voltage
Maximum Turn-On Peak Current
Maximum Continuous Load Current
VO(max)
VI
VINS
IP(max)
IL
Max. Continuous Power Dissipation
Pd(max)
Linear Derating
Operating Temperature Range
Storage Temperature Range
Max. Permissible Magnetic Field
Operating Voltage Range
Typical Breakdown Voltage
TO
TS
B
VO
Vbr
Typical Off-State Current
Typical Turn-On Resistance
Ioff
Rstat
HTS 61-06-C
Ioff < 50 µADC, Tcase = 70°C
Between HV switch and control / GND, continuously
Between switch and housing surface, 3 minutes
Tcase = 25°C
tp< 200 µs, duty cycle <1%
Standard devices, forced air 4 m/s
Tcase = 25°C
Devices with option CF-LC, air 4 m/s
Tfin = 25°C
Devices with option GCF, on heat sink.
Tflange = 25°C
Devices with option ILC, water 0.1 l/min.
Tinlet = 25°C
Devices with option DLC-0.6
Standard devices, forced air 4 m/s
Tcase = 25°C
Devices with option CF-LC, air 4 m/s
Tfin = 25°C
Devices with option GCF on heat sink.
Tflange = 25°C
Devices with option ILC, water >0.1l/min
Tinlet = 25°C
Devices with option DLC-0.6
Standard devices, forced air 4 m/s
Devices with option CF-LC, air 4 m/s
Above 25°C
Devices with option GCF, on heat sink.
Devices with option ILC, water 0.1 l/min.
Devices with option DLC-0.6
Standard devices & options CF-LC, GCF, ILC (Opt. DLC)
Switches with option ILC may require frost protection!
Homogeneous steady-field, surrounding the whole switch
Positive or negative voltage (depending on connection)
NOTE: V br is a test parameter for quality control
purposes only. Not applicable in normal operation!
Ioff > 0.5 mA
121-03-C 181-02-C
±6
± 12
0-6
0-12
± 18
± 40
± 40
24
0.43
1.22
1.57
1.57
2.72
15
120
200
200
600
0.333
2.666
4.444
4.444
13.33
-40...70 (60)
-50...100
25
0-18
64
1.1
3.11
4.02
4.02
6.96
32
0.54
1.55
2
2
3.46
6.3
12.6
18.9
241-01-C
361-01-C
Unit
± 24
± 36
15
0.23
0.66
0.86
0.86
1.49
12
0.21
0.61
0.78
0.78
1.36
kVDC
kVDC
kVDC
ADC
0-24
0-36
W/K
°C
°C
mT
kVDC
25.2
37.8
kVDC
ADC
Watt
< 10
µADC
5.2
21
36
120
144
12.4
50
81
271
324
Ohm
Typical Propagation Delay Time
td(on)
120
ns
Typical Output Pulse Jitter
tj
< 500
ps
Typical Turn-On Rise Time
tr(on)
6
10
12
19
20
9
14
25
33
40
20
28
92
120
147
<8
<12
<15
<22
<24
ns
Typical Turn-Off Rise Time
tr(off)
< 12
ns
Maximum Turn-On Time
ton(max)
infinite
ns
Minimum Turn-On Time
ton(min)
75
ns
Maximum Continuous
f(max)
>15
>15
>8
>12
>8
Switching Frequency
50
50
50
50
50
750
750
750
750
750
kHz
Maximum Burst Frequency
fb(max)
5
MHz
Maximum Number of Pulses / Burst N(max)
fb =1MHz (1µs spacing). Switch shutdown if N(max) is exceeded.
150 Use option HFB for >150 pulses Pulses
Coupling Capacitance
CC
Switch against Standard devices & options CF, DLC
14
control side
Devices with options GCF, ILC
50 ... 100
pF
Natural Capacitance
CN
Between switch poles, @ 0.5 x VO(max)
52
13
20
6
5
pF
Control Voltage Range
Vctrl
The Vctrl has no impact on the output pulse shape.
2 ... 6
VDC
Auxiliary Supply Voltage Range
Vaux
The +5 V supply is not required in the HFS mode.
4.5 ... 5.5
VDC
Typical Auxiliary Supply Current
Iaux
Vaux = 5.00 VDC, Tcase = 25°C.
0.01 x f(max)
120
Active current limitation above 700 mA. @ specified f(max)
500
mADC
Opt. HFS, Ext. Supply Voltage V1 VHFS(V1) Stability ±3%, current consumption <0.4 mA/kHz @ 25°C
15
VDC
Opt. HFS, Ext. Supply Voltage V2 VHFS(V2) Stability ±3%, current consumption <0.9 mA/kHz @ 25°C
180
VDC
Intrinsic Diode Forward Voltage
VF
Tcase = 25°C, IF = 0.3 x IP(max)
<10
VDC
Diode Reverse Recovery Time
trrc
Tcase = 25°C, IF = 0.3 x IP(max), di/dt = 100 A/µs
<700
ns
Dimensions
Standard housing
175 x 50 x 30
Devices with option CF-LC
175 x 50 x 42
Devices with option GCF / FH
175 x 50 x 30
Devices with option ILC & DLC-0.6
175 x 50 x 55
mm3
Weight
Standard housing
250
Devices with option CF-LC
295
Devices with option GCF
640
Devices with option ILC & DLC-0.6
430
g
Control Signal Input
Pin 1 / Yellow. TTL compatible with Schmitt-Trigger characteristics. Control voltage 2-10 V (3-5 V recommended for low jitter).
Logic GND / 5V Return Pin 2 / Black. The ground pin is internally connected with the safety earthing terminal (threaded insert) on bottom side.
5V Auxiliary Supply
Pin 3 / Red. The 5 V input is used for rep rates up to the specified max. frequency f(max). Higher rep rates require option HFS.
Fault Signal Output
Pin 4 / Orange. TTL output, short circuit proof. Indicating switch & driver over-heat, over-frequency, low auxiliary voltage. L = Fault.
Inhibit Signal Input
Pin 5 / Green. TTL compatible, Schmitt-Trigger characteristics for the connection of external safety circuits. L = Switch Inhibited.
LED Indicators
GREEN: "Auxiliary power good, switch OFF". YELLOW: "Control signal received, switch ON". RED: "Fault condition, switch OFF"
Temperature Protection A) Standard switches and switches with option CF, GCF: Thermo trigger 75°C, response time < 60 s @ 3xPd(max), ∆T=25K (50 to 75°C). Separate driver
protection. B) Switches with option DLC: 65°C, response time < 3 s @ 3xPd(max), ∆T=25K (40 to 65°C), coolant flow > 3l / min. Separate driver protection.
HTS 61-06-C
HTS 121-03-C
HTS 181-02-C
HTS 241-01-C
HTS 361-01-C
Fast HV Transistor Switch, 6 kV, 64 A
Fast HV Transistor Switch, 12 kV, 32 A
Fast HV Transistor Switch, 18 kV, 24 A
Fast HV Transistor Switch, 24 kV, 15 A
Fast HV Transistor Switch, 36 kV, 12 A
25°C, @ 0.8xVO. Lower leakage current optionally available.
0.1 x IP(max)
Tcase = 25°C, Tflange = 25°C, Tfin = 25°C,
1.0 x IP(max)
Tinlet = 25°C.
Resistive load, 0.1 x IP(max), 0.8 x VO(max), 50-50%
Impedance matched input, Vaux / Vctrl = 5.00 VDC
10-90%
RL = 5kI, 0.2 x VO(max), CL= 10pF
RL = 5kI, 0.8 x VO(max), CL= 10pF
RL = 5kI, 0.8 x VO(max), CL=100pF
VO= 0.5 x VO(max), IL = 0.5 x Ip(max)
10-90%, resistive load @ 1.0 x Ip(max)
No limitation, true on-off switch with relay character
10-90%, resistive load @ 1.0 x Ip(max)
@ Vaux= 5.00 V Standard devices without HFS option
Sw. shutdown if Standard devices with HFS supply
f(max) is exceeded Opt. HFS + sufficient cooling option
Option LP
Option S-TT
Option HFS
Option UFTR
Option UFTS
Low Pass. Input filter for increased noise immunity.
Soft Transition Time. Slower switching speed for simplified EMC.
High Frequency Switching (two auxiliary supply inputs V1 & V2 )
Ultra Fast Thermotrigger. Response time for shut down < 5s.
Ultra Fast Thermosensor. Response time < 5s. NTC 10k / ± 1%
Option CCS
Option CF-LC
Option GCF
Option ILC
Option DLC
Ceramic Cooling Surface. Pd(max) can be increased by the factor 2 to 3.
Copper Cooling Fins. Pd(max) can be increased by the factor 3 to 10.
Grounded Cooling Flange (copper). Pd(max) can be increased by the factor 3 to 15.
Indirect Liquid Cooling (for water). Pd(max) can be increased by the factor 3 to 15.
Direct Liquid Cooling (for FPE/PFC). Pd(max) can be increased by the factor 10 to 100.
FOR FURTHER PRODUCT OPTIONS PLEASE REFER TO THE OPTIONS PAGE.
Customized switching units are available on request. All data and specifications subject to change without notice. Please visit www.behlke.com for up-dates.
361-01-C-RS / Revision 19-07-2016 ©2016 All rights reserved