Download Intermediate Algebra Practice Test

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Intermediate Algebra problems you can use for practice. Remember, you may not use a calculator
when you take the assessment test. Use these problems to help you get up to speed.
_________________________________________________________________________________________
Solve the equation.
x + 4 3x - 12
=1
1)
4
10
Solve.
A) 24
B) 6
C) - 24
D) -48
Solve the problem.
2) The difference of a number and 8 is the same
as 34 less the number. Find the number.
A) 21
B) -13
C) -21
D) 13
3) The population of a town is currently 22,000.
This represents an increase of 80% from the
population 5 years ago. Find the population of
the town 5 years ago. Round to the nearest
whole number if necessary.
A) 12,222
B) 4400
C) 17,600
D) 27,500
4) P = 2L + 2W for L
P - 2W
A) L =
2
C) L =
P-W
2
B) L = P - 2W
6) The average price (in dollars) to rent a studio
in a certain city can be approximated by the
equation p = 34.0t + 646 where t is the number
of years since 1990. Solve this equation for t
and use the new equation to determine
approximately what year it will be when the
average price of a studio in this city reaches
$1326.00.
A) 2012
B) 2013
C) 2010
D) 2011
Solve the linear inequality. Express the solution using
set-builder notation and interval notation. Graph the
solution set. NOTE: A square bracket, i.e. [, is the same as
a filled in circle. A round bracket, i.e. (, is the same as an
open circle.
7) 3x - 9 < 4(x - 3)
A) {x|x < -3}; (- , -3)
B) {x|x > -21}; (-21, )
D) L = P - W
C) {x|x > 3}; (3, )
nE
for n
5) I =
nr + R
A) n = IR(Ir - E)
C) n =
IR
Ir + E
B) n =
-IR
Ir - E
D) n =
-R
Ir - E
D) {x|x < 21}; (- , 21)
Solve the inequality. Graph the solution set, and state the
solution set in interval notation.
8) |x - 4| + 2
9
11) f(x) = x2 + 3
A) {x|x > -3}
B) {x|- < x < }
C) {x|x -3}
D) {x|x -3}
Find the slope of the line that goes through the given
points.
A) [-3, 9]
12) (-2, -1), (9, -1)
2
A) 11
B) [-3, 11]
C) 0
C) (-3, 11)
B) -
2
7
D) Undefined
Find an equation of the line with the given slope and
containing the given point. Express your answer in
slope-intercept form.
13) m = -3, (-6, 5)
D)
A) y = -3x + 13
B) y = -3x - 13
C) y - 5 = x + 6
D) y - 5 = mx + 6
14) m = -
List the intercepts of the graph.
9)
2
, (5, 5)
3
A) y = -
3
25
x2
2
B) y =
2
25
x3
3
C) y = -
2
25
x+
3
3
D) y = -
2
25
x3
3
15) m is undefined, (5, -1)
A) y = 5
B) x = 5
C) x = -1
D) y = -1
Use the given conditions to write an equation for the line
in slope-intercept form.
16) Passing through the point (2, 1) and
perpendicular to y = 3x - 3
5
5
A) y = 3x +
B) y = -3x +
3
3
A) (0, -2), (0, 8), (4, 0)
B) (0, -2), (8, 0), (0, 4)
C) (-2, 0), (0, 8), (4, 0)
C) y =
D) (-2, 0), (0, 8), (0, 4)
Find the domain of the function.
2x - 3
10) f(x) =
x+6
B) {x|x
C) {x|x -6}
D) {x|x -6,
D) y = -
1
5
x+
3
3
Determine whether the ordered pair is a solution of the
system of linear equations.
17) 4x = 18 - y ; (5, -2)
3x = 7 - 4y
3
}
2
A) {x|x 6}
1
5
x+
3
3
3
}
2
A) Yes
B) No
Solve the system of equations using elimination.
18) 3x - 6y = -7
8x - 5y = -5
41 5
5
41
,
,A)
B)
33 33
33
33
5 41
,
C)
33 33
41
5
,D) 33
33
Simplify the expression. All exponents should be positive
integers.
-6a13b-3
19)
3a 7b-9
A)
-2b6
a6
-2
C)
a 6 b6
B)
-2a6
b6
D) -2a 6b6
Simplify the expression.
20) (-5)2 · 100
A) -25
C) -
1
25
B)
1
25
D) 25
A) a(b2 + 11ab)(b2 - 11ab)
B) ab2 (b + 11a)(b - 11a)
C) ab2 (b - 11a)2
D) Prime
Find the product.
25) -5x6(11x7 + 6x4 + 12)
A) -55x7 - 30x4 - 60
B) -55x13 - 30x10
C) -55x13 + 6x4 + 12
D) -55x13 - 30x10 - 60x6
Solve the system of equations using substitution.
x - 6y = -42
26)
-5x - 5y = -35
A) (0, 7)
B) (-7, 0)
C) (1, 6)
D) no solution
Factor the sum or difference of two cubes completely.
27) x3 + 27
Perform the indicated operation. Express the solution in
scientific notation.
21) (8 × 10-5) · (6.1 × 10-3 )
22)
24) ab4 - 121a 3 b2
A) (x + 3)(x2 + 9)
B) (x - 3)(x2 + 3x + 9)
C) (x - 27)(x + 1)(x - 1)
A) 4.88 × 10-7
B) 4.88 × 1015
C) 488 × 10-8
D) 48.8 × 10-7
D) (x + 3)(x2 - 3x + 9)
28) 64y3 - 1
12.74 × 107
A) (64y - 1)(y2 + 4y + 1)
4.9 × 108
A) 2.6 × 10-1
B) 2.6 × 1015
C) 5.2 × 1015
D) 5.2 × 10-1
Factor the difference of two squares completely.
23) 25 - 16x2
A) (5 + 4x)(5 - 4x)
B) (5 + 4x)2
C) (5 - 4x)2
D) Prime
B) (4y - 1)(16y2 + 1)
C) (4y - 1)(16y2 + 4y + 1)
D) (4y + 1)(16y2 - 4y + 1)
Factor completely, or state that the polynomial is prime.
29) 40x2 + 2x - 24
A) (5x + 4)(8x - 6)
B) 2(5x + 4)(4x - 3)
C) (2x + 8)(4x - 3)
D) 2(5x - 4)(4x + 3)
Find the intercepts of the graph of the function.
30) 2x3 + 2000
36) g(t) = t2 + 6t - 16
A) 2(x + 10)3
A) (8, 0), (2, 0), (0, - 16)
B) 2(x3 + 1000)
B) (-8, 0), (2, 0), (0, - 16)
C) 2(x + 10)(x 2 - 10x + 100)
C) (-8, 0), (1, 0), (0, - 16)
D) Prime
D) (8, 0), (-2, 0)
Find the special product.
Factor the polynomial completely.
31) (7x + 12)2
37) x4 - 8x 2 + 7
A) 7x2 + 168x + 144
B) 49x2 + 144
C) 49x2 + 168x + 144
D) 7x2 + 144
A) (x2 - 1)(x2 - 7)
B) (x2 + 1)(x2 + 1)
C) (x2 + 1)(x2 - 7)
D) Prime
Find the values of x such that the given function has the
stated value.
32) (6x - y)2
38) f(x) = x2 + 8x; f(x) = 48
A) 36x2 - 12xy - 2y2
A) x = 12 or x = 4
B) x = -12 or x = 4
B) 36x2 + y2
C) x = 12 or x = -4
D) x = -12 or x = 1
C) 36x2 - 12xy + y2
D) 36x2 - 6xy + y2
Factor the polynomial completely. If the polynomial
cannot be factored, say it is prime.
Multiply the rational expression. Express the product as a
rational expression in lowest terms.
80x
10x - 50
·
39)
x2 - 25
8x2
33) x2 - 5xy - 24y2
A) (x - 3y)(x + y)
B) (x + 3y)(x - 8y)
C) (x - 3y)(x + 8y)
D) Prime
34) 10x2 + 7x - 12
40)
A) (2x - 3)(5x + 4)
B) (10x + 3)(x - 4)
C) (2x + 3)(5x - 4)
D) Prime
Factor completely, or state that the polynomial is prime.
35) x3 - 4x 2 - 36x + 144
A) (x + 4)(x + 6)(x - 6)
B) (x - 4)(x + 6)(x - 6)
C) (x - 4)(x - 6)2
D) Prime
A)
100x
x+5
B)
10
x(x + 5)
C)
100
x(x + 5)
D)
64
x(x + 5)
6w - 36
w2 + 8w + 7
·
2
w + 1w w2 - 13w + 42
A)
6(w - 7)
w(w + 7)
B)
6(w + 7)
w-7
C)
6(w + 7)
w(w - 7)
D)
6
w
Determine the domain of the rational function.
2
41) R(x) =
x-7
A) {x|x 7}
B) {x|x -7}
C) {x|x
D) {x|x
0}
0, x
7}
Perform the indicated operation and simplify the result.
4x2 - 17x + 5 3x2 - 9x - 7
42)
x2 - 15x + 54 x2 - 15x + 54
43)
A)
x-2
x+9
B)
x2 - 8x + 12
x2 - 15x + 54
C)
x-2
x-9
D)
x+2
x-9
2x + 7
x-5
B)
27b - 16a2
30a 3b2
B)
27b + 16a2
D)
30a 3b2
B)
-11(y + 9)
(y + 2)(y - 9)
D) 0
10)
A) 10 + 2 5
B) 20
C) 100 + 2 5
D) 10 + 4 5
Use the product rule to simplify the expression. Assume
that the variables can be any real number.
405k7 q8
A) 9q4
C) 9k3 q4
5
D) 5x4
3k
B) 5k3 q4
3
D) 5k7 q8
3k
Simplify the radical.
3
50) (-6)3
27b - 8a 2
30a3 b2
Multiply, and then simplify if possible. Assume all
variables represent positive real numbers.
47)
3
51)
5
A) -18
B) -6
C) 18
D) 6
(x - 1)5
A) -x + 1
B) |x - 1|
C) -|x - 1|
D) x - 1
Evaluate the expression, if possible.
11(y + 9)
(y + 2)(y - 9)
2( 50 +
3k7
C) 5k3 q4
y+9 y+9
y+2 y-9
-7(y + 9)
C)
(y + 2)(y - 9)
46)
B) x4
75k7q8
A) 5q4
2x - 7
D)
x-5
27b - 16a2
C)
30a 2b3
A)
x
A) 5x4
3
C) x4 2
-5x
x-5
Add or subtract, as indicated, and simplify the result.
9
8
44)
10a 3b 15ab2
45)
3 250x 13
2x
49)
2x - 7
C)
5-x
A)
48)
Simplify the radical expression. Assume that all variables
represent positive real numbers.
2x
7
+
x-5 5-x
A)
Divide and simplify.
5k7
B) 9k3 q4
5k
5
D) 9k7 q8
5k
52) 64-4/3
A) 256
1
B)
256
C) -
1
256
D) not a real number
Multiply, and then simplify if possible. Assume all
variables represent positive real numbers.
53) ( 2 + 5)2
A) 10 + 2 10
B) -3 + 2 10
C) 7 + 2 10
D) 7 - 2 10
Add or subtract. Assume all variables represent positive
real numbers.
54) 2 125 - 3 20 - 4 45
A) -8 5
B) 7 5
C) -7 5
D) 2 5
Rationalize the denominator and simplify. Assume that all
variables represent positive real numbers.
5
55)
7-9
5 7 - 45
A)
74
C) -
5 7 + 45
B) 74
5 7 - 45
74
D)
5 7 + 45
74
B)
C) 4
D)
1
60) 4-x =
64
A) x =
1
16
C) x = -3
B) x = 3
D) x =
1
3
Simplify the radical expression. Assume that all variables
represent positive real numbers.
3
3
61) 6 · -36
Simplify the complex rational expression.
4
+1
a
56)
4
-1
a
A) 4 - a2
Solve for x.
a2
A) -6
B) -216
C) 6
D) 6 6
Complete the square for the binomial. Then factor the
resulting perfect square trinomial.
4 - a2
4+a
4-a
62) x2 - 14x
A) x2 - 14x - 49 = (x - 7)2
B) x2 - 14x + 196 = (x - 14)2
Solve for x.
C) x2 - 14x - 196 = (x - 14)2
57) 11x = 1
A) x = 1
B) x =
C) x = 0
D)
D) x2 - 14x + 49 = (x - 7)2
1
11
Add or subtract, as indicated, and simplify the result.
3
5
+
63)
2
2
y - 3y + 2 y - 1
Solve the equation by completing the square.
58) x2 + 10x + 15 = 0
A) {5 -
15, 5 +
B) {5 +
10}
C) {-5 D) {-10 +
15}
10, -5 +
10}
15}
Solve the rational inequality.
60
< 16
59) x +
x
A) (0, 6)
C) (- , 0)
(10, )
(10, )
A)
8y - 7
(y - 1)(y + 1)(y - 2)
B)
30y - 7
(y - 1)(y + 1)(y - 2)
C)
8y - 7
(y - 1)(y - 2)
D)
7y - 8
(y - 1)(y + 1)(y - 2)
Solve the equation.
64) log3 (2x + 2) = log3 (30)
B) (- , 0)
D) (0, 6)
(6, 10)
(6, 10)
A) x = 56
B) x = 14
C) x = 16
D) x = 64
65) log2 (x + 4) - log2 (x + 3) = 1
A) x = 2
B) x = - 2
C) x = 1
D) no solution
66) log2 (x + 1) + log2 (x - 5) = 4
A) x = 8
B) x = 7
C) x = -3
D) x = 7, x = -3
Evaluate the expression, if possible.
27 -1/3
72)
8
A) -
Solve the equation. Give an exact solution.
67) e4x = 6
A) 4 ln 6
C)
ln 4
6
B)
3
e
2
D)
ln 6
4
C)
3
2
73)
D)
A) {2, 8}
74)
4
}
3
D) {-4}
10x - 9 - 9 = 0
C) {
Rationalize the denominator. Assume that all variables
represent positive real numbers.
4
69)
7
A)
4 7
7
B) 53
C)
16 7
7
D) 4 7
Solve the equation.
B) {9}
36
}
5
D) no real solution
Solve the rational inequality.
x-1
>0
75)
x+3
A) (-3, 1)
B) (- , -3)
C) (1, )
D) (- , -3)
Solve the equation.
1 42
76) 1 + =
y y2
A) y = -7 or y = 6
70) x4 - 20x2 + 64 = 0
B) y = 7 or y = -6
A) {2, 4}
B) {4, 16}
C) {-2i, 2i, -4i, 4i}
D) {-2, 2, -4, 4}
C) y = 7 or y = 6
1
1
D) y = - or y =
7
6
Simplify the complex rational expression.
71)
77) m -
x 1
9 x
3
=2
m
A) m = -3 or m = 1
1
B) m = - or m = 1
3
3
1+
x
2
3
B) {8}
A) {81}
log 2
+7
log 3
3
2
2x + 1 = x - 3
C) {-4,
B) log 3 - log 2 - log 7
log 2
+ log 7
C)
log 3
B) -
Solve the equation.
68) 2x + 7 = 3
log 3
-7
A)
log 2
D)
2
3
1
3
A)
9
x+3
B)
x-3
9
C) m = -1 or m =
C)
9
x-3
D)
x+3
9
D) m = -1 or m = 3
(1, )
78)
6
9
3
=
x + 4 x - 4 x2 - 16
A) x = 67
B) x = 63
C) x = -21
D) x = 21
Solve.
79) A ladder that is 26 feet long is 10 feet from the
base of a wall. How far up the wall does the
ladder reach?
A) 24 ft
B) 4 ft
C) 576 ft
D) 2 194 ft
Use the quadratic formula to solve the equation.
80) 8x2 + 24x = - 17
-6 - 70 -6 + 70
,
A)
4
4
2 -24 +
,
4
B)
-24 4
C)
-6 - 2 -6 + 2
,
16
16
D)
-6 - 2 -6 + 2
,
4
4
2
81) 8x2 + 1 = 3x
-3 - i 23 3 + i 23
,
A)
16
16
B)
3 - i 23 -3 + i 23
,
16
16
C)
3 - i 23 3 + i 23
,
16
16
D)
-3 - i 23 -3 + i 23
,
16
16
Related documents