Download Math 4R - Farmingdale School District

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 4R
Linear Systems & Matrices HOMEWORK
HW # 47: lJIJe el,i8lMeltliis
p.
p.
p.
p.
528
529
540
542
I:u:
'iI
18 II !f!la2
- # §7, 60
- # 64
- # 39 - 42
- # 72. 74 (word DFoblems)
HW#48:
WS - Practice Worksheet 2-1
HW#49:
-2
I. Given the matrix
A =
[0
53 -13]
list the elements indicated below:
II. Write a matrix whose elements are b11
b31 2, b32 7.
What are the dimensions of matrix B?
=
=
= 2, b = -3, b = 1, b = -5,
12
21
22
III. Solve the system of equations:
3x+4y = 375
5x+2y = 345
IV. For each of the following systems of equations:
(i)
Label as consistent or inconsistent, dependent or independent.
(ii)
Solve algebraically (use any method you wish).
(a)
(c)
y = 2x+3
y-x=l
(b)
y-x = 1
x-y=2
2y+3x=6
2x+2y = 6
(d)
y=-x+3
3
y=--x+l
2
V. Solve the matrix equations:
(a)
[x
2y] = [y +
5
x-
3]
(c)
[X y-1
1]
=
[Y -
x+
x+l
1]
HW#SO:
I. p. 615 -
#
5,7,9
II. The equations
3x + 2y = 7
and
kx + 6y = 8 are inconsistent. Find k.
III. Solve the following matrix equation:
1 [- x_ -1 3] = [-21]
2x
[y + 2 +
I.p.615-#15-19
Using your results to parts (a) and (b) to justify your answer, is matrix
multiplication commutative?
II. Study for Quiz
HW#S2:
WS - Practice Worksheet 2-2
Study for Quiz
Quiz!!
HW#S3:
WS - Laboratory 9: Matrix Algebra -
#
1 - 6, 8, 9, 11
HW#S4:
I. Find the value of each determinant.
-3
(a)
I1
(c)
7 16
13
8
II. Text p. 635 -
_541
#
(b)
5
8
1_ 3 -2
4
(d)
[-0
8
2
41 - 44, # 57,58
III. Vera Clean starts a Garpet cleaning business and buys a carpet cleaning maohine for
$500. It costs her $10 per carpet for ohemioals and other expenses and she oharges
$12 per carpet for cleaning.
(a) 'IVflatis her fixed Gost? l=Ier vaFiae.'<) Gost?
(b) If she cleans 120 oarpets does she make a profit or loss? 1=10'11 much?
(0) If she cleans 280 carpets does she make a profit or loss? I=IO'A' ffiuoh?
(d) l=IO'tvmany does she need to olean in order to break even?
(e) l=Iow maR'y does she need to olean in order to make a $200 profit?
HW# 55:
Text p. 625 -
#
10 - 16
{Find the inverse of each matrix}
HW# 56:
Text p. 626 -
#
39, 45, 47, 49
HW#57:
WS - More Solving Matrix Equations
Study for Quiz.
HW# 58:
p. 615 - # 2,11,21,23
p. 626 - # 40, 50
p. 634 p. 650 -
#
#
7, 12
45, 46
WS - Cramer's Rule - # 3 - 6
Study for Test!!!
I~
I ~.. I
NAME
- -l1:.:LJ Pradice
Solvin,$JIsteMs
t!)f
DATE
Worksheet.
e._ions
St.te whIJIltsr- each SJl,hm i"CDuistent snd independent,
cona/st8nt and tlelJsndsnt. or inconsi8tent.
1.
ax + 4y :::5
2x - 5y
.
2. 3x -:-3y ;: 12
-x + y = - 4
=8
Solve·each system by (pSIphing.
8. 3x - y ::: 6
4. 2x + 3y = 12
x+y=6
x+y=6
y
0
y
)(
0
If
Solve esch sy.sMm of equations BlgebraiCIIlly.
5.
ax - 2y :; 7
6. 4x ~ 3y = 15
x+y=4
2x+y=5
7. 3x + 4y = 8
-3x - 4y = 10
8. 2x - y ~ 6
x+y=6
9. 3x - 2y =-9
4x + 5y = 11
10. 7x - y; 9
2x + 3y =:; 19
7
GI8nc:oe Division, Maanlllan/McGraw-H~!
.
u
I
~
q
r')
~
:'f
DA fE
\l'iJ-\lVIr.
Practice Worksheet
Introduction to Matrices
Use matrices A, B, and C to find each sum, difference, or product.
A=
2-1 31 41J
l
5 -2
3
B=
l-1
5 6J
2 -7 -2
4 4 2
C = [8
10 -9J
12 14
-6
1. A +B
2. A - B
3. B-A
4. -2A
5•
6.AA
AD
£1U
7. CA
8. CB
9. (CE)A
10. C(BA)
Find the v'1lues of x and y for which each matrix equation is true.
11.
[2x4~3] = [3~J
12.
[n
=
8
Glencoe Division, Macmillan/McGraw-Hili
[2Y2~ 4]
Laboratory 9 Exercises: Matrix Algebra
,~,--~.~,.
IfA=[~ -2
D=
[-10]
2
4
!]
B
=
[3 0 -1]
C = [0 4 5]
E
=
[-2 0 3]
F
3
2
-1
0
4
5
-1
-1
2
4
6
5
1
=
[2 3]
4
5
0
-1
find:
1.A +F
2. E-B
3.D·C
4.C·D
5. B·E
6. A-[
7. B· B-1
8. F-A
9. C·F
10. E-1
11. 2F - 3A
[ = [~ ~]
Matrices Practice 1
Perform the indicated operation, whenever possible.
1.
[-1 1] [6 2] =
2
+
5
6-3
4.[8 -7]+[-6 4]_[-4 -7]
-7
5
7
8x-7y
5. I
-2
=
4-9
5x-5y
-3k-8z
8w-5v
-
-4m+5n
8k-3z
5w+9v
6m-7n
Find the indicated expression.
6. Let A
=
[1 3]
2 5
and B
=
[0 4] . .
-1
6
Find 3A + B .
{OVER}
7. Let
C=[~3] D=[~J
and
Find
C-4D.
Perform the matrix multiplication.
8.
[-1 3][-2 0]=
3
11.
2 -1
2
[-8 3
-7 9
{OVER}
Evaluate each determinant.
12. 1-2
1
41
3=
102
13.1-3 1 -2
421
-2
1
5
2
-1
-1
4
1
-1
-1
-4
2
2
2
14.13
o
231
15.10
16 16 -3
. '1
3'
-4 5
=
F3
'i~
f.
J;;actice Worksheet------
:'"-~
I:.
t,
•
DATE ----
Determinants and Multiplic ....tive In\~'er~;esof a Matrix
Find the value of each determinant .
1.
2 -1
3.
. I '3 -1>1
1 9
I_~ ~I
2
-3
~,'
c~
31
1
41
iJl:,
1
1 -2
-1
1
I '2..
-:1
.5
Find the inverse of each matrix if it exists.
1
5. [ 5
21
6, [
•
.::/
oj
S. 2x: -
ay
Solve each system by using matrix equations .
7. 3x + Y = 23
2x + y = 18
=
17
3x + y =: 9
+ 4y = 6
2x - 21y = 21
9. 2x + 5y = ~8
3x - 2y = -15
,
361
-1
10 4
10" 3x
~'
.
;.
<>
U:. 7x - 3y = 4
x + 2y = -14
11. 4x - 3y c.:.:: -16
2x + 5y = 18
!f:
•
9
Glencoe Division, Macmillan/l'v'l.:Gr.,w H II
if')
More Solving Matrix Equations.
'
Solve the following systems of equations using matrix equations.
1.
2.
4x+2y=10
x - Y = 13
2x+3y=7
x+4y=6
{OVER}
..
3.
4.
2x+2y=-6
5x-5y=-15
- 5x- 5y
=
25
- 2x - 4y
= 16
17
Cramer's Rule
Solve each system of equations using Cramer's Rule.
4x-7y =-2
2. x+2y= 7
3x+5y = 7
1. 6x- y=-8
3x+3y =-9
3. -2x+ y=-4
2x+ y+3z =8
4, x+2y-2z
=3
5x+ y+z= 1
x+2y+z
=3
5. 2x+ y-2z
=-4
-x+4y+z=-7
x+3y-2z
=-2
7. -2x-4y+5z
=9
4x + 7y + 10z = 0
2x- y+z=5
9. x+2y-2z=0
- 5x + 3y + 6z = -7
x+ y+2z:=:2
6x+3y-2z
=
1
6. 4x - 2y + 3z = 7
2x+ y-4z=-3
x-2y-3z=-8
8. 2x+4y-z
= -21
5x + 3y + 2z = 14
x+2y+3z
=6
10. 2x - 4Y + 2z = 16
3x+ y-z=-2
2x- y+z=6
11. 2x - y + 3z = 5
12. x + 3y+5z = 10
x-y-z=-2
4x-4y+2z=
-3
Matrix Review
Use matrices D, E, F, and G to complete # 1 - 3.
3
D=[ -6 ~] E=r
_19
4
q
F=
[-62 -/ :4]
-3
3. EF
2. 3E - G
1. -2D
Find the value of each.
3 -2
8 -9
4.13
10
6. Find the inverse of
5
5.17
1
-4
o
1
1
[3 -6]
1 _ 2 ,if it exists.
:ylJ
Y
7. Find the values of x and y for which
3
r
=
rX+5l
1~ J is true.
Solve each using matrix equations.
8. 4x - 3y ;:: 2
7x + y 6
=
10. Solve using Cramer's Rule.
9. 2x - 3y =-8
-3x + 5y 13
=
x - 3y - 3z ;:: 0
2x + 5y - 5z = 1
-x + 5y - 6z = -9
G=
r 3 -4
5
2
-8
6
J
Matrix Review II
Use matrices A, B & C to complete #1-4.
A
=
l2-1
OJ
2
1) -4A
3) Be
4) BC-2A
Find the value of each determinant for #5 & 6.
2 -1
5) 14
6)
6
l
3x+2y =2
4x+ y=-4
2 4
6
3
-3
7) Find the values of x & y for which X+8
3
8) Solve
-1
x+ y+2z=2
2x - y + 3z = 5
x-y-z=-2
7 0
-5J = l38 -5
-y
using matrix equations.
9) Solve using Cramer's Rule:
5
.
3
4y-1O
J is true.
Related documents