Download PowerPoint - Basics of CT

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Nuclear medicine wikipedia , lookup

Backscatter X-ray wikipedia , lookup

Positron emission tomography wikipedia , lookup

Transcript
Siemens 2⋅2⋅32=128-slice
dual source cone-beam spiral CT (2005)
Basics of Clinical X-Ray
Computed Tomography
EMI parallel beam scanner (1972)
y
Marc Kachelrieß
x
z
Institute of Medical Physics
University of Erlangen-Nürnberg
Germany
1536 views per rotation in 0.33 s
2⋅32×(672+352) 2-byte channels per view
600 MB/s data transfer rate
180 views per rotation in 300 s
www.imp.uni-erlangen.de
GE LightSpeed
5 GB data size typical
2×160 positions per view
Toshiba Aquilion
What does CT Measure?
• Polychromatic Radon transform
p( L ) = − ln dE w( E ) e
Siemens Somatom Definition
µ (r , E )
− dL µ ( r , E )
with normalized detected spectrum: 1 = dE w( E )
Philips Brilliance
• Widely used monochromatic approximation:
p ( L ) ≈ dL µ ( r , Eeff )
with the effective energy being around 70 keV
Dual Source
CT-Performance (Best-of Values)
CT Basics
From Single-Slice to Cone-Beam Spiral CT
Trot
• Technology
1972 300 s×42
– Basic parameters
– Detector concepts, tube technology
– Scan trajectories, scan modes
–
–
–
–
Spiral CT
• Algorithms
2D filtered backprojection
Spiral z-interpolation
ASSR and EPBP (cone-beam recon.)
Phase-correlated CT (e.g. cardiac CT)
• Image quality and dose
–
–
–
–
Spatial resolution (PSF, SSP, MTF)
Relation of noise, dose and resolution
Dose values (CTDI, patient dose)
Dose reduction techniques
collimation
typ. 30 cm scan1
slices/s
2×13 mm
---
0.007/42
1980
2s
2 mm
20 mm, 30 s
0.5
1990
1s
1 mm
10 mm, 30 s
13
1995
0.75 s
1 mm
8 mm, 30 s
1.33
1998
0.5 s
4×1 mm
4×1 mm, 30 s
124
2002
0.4 s
16×0.75 mm 16×0.75 mm, 12 s
604
2004
0.33 s
64×0.5 mm
2404
2010
0.2 s
512×0.5 mm 512×0.5 mm, 0.2 s
1
2
3
4
64×0.5 mm, 3 s
2500
assuming a breath-hold limit of 30 s
factor 4 converts from head FOM to full body FOM
assuming p = 1, otherwise Seff is increased
assuming p = 1.5 since IQ is independent of pitch for MSCT
Seite 1
1
Fan-Beam Geometry
(transaxial / in-plane / x-y-plane)
p.a. →
x-ray tube
y
180°
Acquisition
lateral →
x
Reconstruction
field of measurement
(FOM) and object
Object, Image
detector (typ. 1000 channels)
y
a.p. →
Sinogram, Rawdata
x
(illustration without quarter detector offset)
Data Completeness
y
y
x
x
In the order of 1000 projections
with 1000 channels are acquired
per detector slice and rotation.
y
Each object point must be viewed by an angular interval of
180°or more. Otherwise image reconstruction is not possible.
y
x
x
(illustration without quarter detector offset)
Basic Parameters
Demands on the Mechanical Design
(best-of values typical for modern scanners)
•
•
•
•
•
•
•
•
•
•
•
In-plane resolution: 0.4 … 0.7 mm
Nominal slice thickness: S = 0.5 … 1.5 mm
Effective slice thickness: Seff = 0.5 … 10 mm
Tube (max. values): 100 kW, 140 kV, 800 mA
Effective tube current: mAseff = 10 mAs … 1000 mAs
Rotation time: Trot = 0.33 … 0.5 s
Simultaneously acquired slices: M = 4 … 64
Table increment per rotation: d = 2 … 50 mm
Pitch value: p = 0.3 … 1.5
Scan speed: up to 16 cm/s
Temporal resolution: 50 … 250 ms
• Continuous data acquisition in spiral scanning mode
• Able to withstand very fast rotation
– Centrifugal force at 550 mm with 0.5 s: F = 9 g
–
with 0.4 s: F = 14 g
–
with 0.3 s: F = 25 g
•
•
•
•
•
Mechanical accuracy better than 0.1 mm
Compact and robust design
Short installation times
Long service intervals
Low cost
Seite 2
2
Tube Technology
Demands on X-Ray Sources
conventional tube
high performance tube
(rotating anode, helical wire emitter)
(rotating cathode, anode + envelope, flat emitter)
cooling oil
cooling oil
cathode
cathode anode
Photo courtesy of GE
∂z
∂RF
• Available as multi-row arrays
• Very fast sampling (typ. 300 µs)
• Favourable temporal characteristics
(decay time < 10 µs)
• High absorption efficiency
• High geometrical efficiency
• High count rate (up to 108 cps*)
• Adequate dynamic range (at least 20 bit)
2∂z
cooling oil
2∂RF
B
2∂RF
anode
C
Photo courtesy of Siemens
Demands on CT Detector Technology
C
cathode
B
C
C
anode
tan φ =
cathode
anode
High instantaneous power levels (typ. 50-100 kW)
Increasing with rotation speed
High continuous power levels (typ. >5 kW)
High cooling rates (typ. >1 MHU/minute)
High tube current variation (low inertia)
Compact and robust design
anode
•
•
•
•
•
•
* in the order of 105 counts per reading and 103 readings per second
Straton Tube
Multirow Detectors for Multi-Slice CT
2006
z
Adaptive Array
Technology
40 mm
GE
64 / 0.37 s / 3.8°
64 × 0.625 mm
40 mm
β
Philips
64 / 0.4 s / 3.8°
64 × 0.625 mm
19 mm
16 channels
(of 103) shown
Siemens
2⋅64 / 0.33 s / 1.9°
2⋅2⋅32 × 0.6 mm
24 × 1.2 mm
32 mm
64 × 0.5 mm
Toshiba
M = 64 / 0.4 s / 3.2°
z
Data courtesy of Siemens Medical Solutions, Forchheim, Germany
Number of simultaneously acquired slices M / Rotation time trot / Cone-angle Γ
Seite 3
3
Scan Trajectories
Rows vs. Slices
z
z
z
FOM
z
4 Rows
4 Slices
6 Rows
4 Slices
1 Rows
4 Slices
4 Rows
8 Slices
M = 1⋅ 4
M = 1⋅ 4
M = 4 ⋅1
M = 2⋅4
p=
d
≤ 1.5
M ⋅S
Spiral
p=
d
≤ 0.9
M ⋅S
Sequence
p=
1
N rot
Circle
CT Basics
From Single-Slice to Cone-Beam Spiral CT
• Technology
– Basic parameters
– Detector concepts, tube technology
– Scan trajectories, scan modes
• Algorithms
–
–
–
–
2D filtered backprojection
Spiral z-interpolation
ASSR and EPBP (cone-beam recon)
Phase-correlated CT (e.g. cardiac CT)
• Image quality and dose
–
–
–
–
Animation by Udo Buhl, Aachen
Spatial resolution (PSF, SSP, MTF)
Relation of noise, dose and resolution
Dose values (CTDI, patient dose)
Dose reduction techniques
Emission vs. Transmission
Emission tomography
• Infinitely many sources
• No source trajectory
• Detector trajectory may be an
issue
• 3D reconstruction relatively
simple
2D: In-Plane Geometry
Transmission tomography
• A single source
• Source trajectory is the major
issue
• Detector trajectory is an
important issue
• 3D reconstruction extremely
difficult
•
•
•
•
Decouples from longitudinal geometry
Useful for many imaging tasks
Easy to understand
2D reconstruction
– Rebinning = resampling, resorting
– Filtered backprojection
Seite 4
4
Fan-beam geometry
Parallel-beam geometry
transaxial
rebinning
(β ,α )
(ξ ,ϑ )
Fan-beam geometry
Parallel-beam geometry
In-Plane Parallel Beam Geometry
β
RF
y
α
y
ϑ
x
ξ
(β ,α )
y
ϑ
x
ξ
x
Measurement:
p(ϑ , ξ ) = Rf (ϑ , ξ ) = dx dy f ( x, y ) δ (x cos ϑ + y sin ϑ − ξ )
(ξ ,ϑ )
FBP (Filtered Backprojection)
2D Backprojection
(Discrete Version of the Transpose Radon Transform)
Measurement:
1D FT:
p(ϑ , ξ ) = dx dy f ( x, y ) δ (x cos ϑ + y sin ϑ − ξ )
dξ p (ϑ , ξ ) e
− 2π iξu
Central slice theorem:
π
Inversion:
= dx dy f ( x, y ) e
P2 (ϑ , u ) = F (u cos ϑ , u sin ϑ )
∞
f ( x, y ) = dϑ du u P2 (ϑ , u ) e
0
− 2π iu ( x cosϑ + y sin ϑ )
2π iu ( x cos ϑ + y sin ϑ )
p(ϑ , ξ )
−∞
π
= dϑ p(ϑ , ξ ) ∗ k (ξ )
0
ξ = x cos ϑ + y sin ϑ
Add ray value to each pixel in the “vicinity“ of the ray.
Seite 5
5
Spiral CT Scanning Principle
Filtered Backprojection (FBP)
Scan
trajectory
Start of
spiral scan
1. Filter projection data with the reconstruction kernel.
2. Backproject the filtered data into the image:
Direction of
continuous
patient
transport
Reconstruction kernels balance between
spatial resolution and image noise.
1996:
1998:
2002:
1× 5 mm, 0.75 s
4× 1 mm, 0.5 s
16× 0.75 mm, 0.42 s
0
z
0
t
2004:
2⋅⋅32×0.6 mm, 0.33 s
Kalender et al., Radiology 173(P):414 (1989) and 176:181-183 (1990)
Spiral z-Interpolation for Single-Slice CT
M=1
without z-interpolation
with z-interpolation
d
p=
≤2
M ⋅S
z
z = zR
Spiral z-interpolation is typically a linear interpolation between points
adjacent to the reconstruction position to obtain circular scan data.
Spiral z-Filtering for Multi-Slice CT
M=2, …, 6
d
p=
M ⋅S
CT Angiography:
Axillo-femoral
bypass
≤ 1.5
M=4
z
120 cm in 40 s
0.5 s per rotation
4×
×2.5 mm collimation
pitch 1.5
z = zR
Spiral z-filtering is collecting data points weighted with a triangular or
trapezoidal distance weight to obtain circular scan data.
Seite 6
6
The Cone-Beam Problem
Animation by Siemens
1×5 mm
0.75 s
4×1 mm 16×0.75 mm 2⋅⋅32×0.6 mm
0.5 s
0.375 s
0.375 s
256×0.5 mm
<< 1 s ?
Advanced Single-Slice Rebinning
(ASSR)
Cone-Beam Artifacts
z
z
z
3D and 4D Image Reconstruction for Small Cone Angles
• First practical solution to the cone-beam problem
in medical CT
• Reduction of 3D data to 2D slices
• Commercially implemented as AMPR
• ASSR is recommended for up to 64 slices
Cone-angle Γ = 6°
Cone-angle Γ = 14°
Cone-angle Γ = 28°
Do not confuse
the transmission algorithm ASSR
with
the emission algorithm SSRB!
Defrise phantom
fokus trajectory
Kachelrieß M, Schaller S, Kalender WA. Med Phys 2000; 27(4):754-772
The Reconstruction Plane
For each reconstruction
position α R minimize the
mean deviation of the R–
plane and the spiral
segment around α R .
R : n ⋅r − c = 0
z
d–Filtering in the Image Domain
d
primary,
tilted imag
es
n γ
• No in-plane interpolations
• Interpolation along d
• Arbitrary d-filter width
τ
R
d
αR
sin γ cos ϕ
n = sin γ sin ϕ
3 intersections
for each R-plane
x, y, ξ
R
cos γ
Resulting mean deviation at RF :
at RM :
final,
transaxial images
∆ mean ≈ 0.014 d
'
∆ mean ≈ 0.007 d
Kachelrieß M, Schaller S, Kalender WA. Med Phys 2000; 27(4):754-772
Kachelrieß M, Schaller S, Kalender WA. Med Phys 2000; 27(4):754-772
Seite 7
7
Comparison to Other Approximate Algorithms
180°LI d=1.5mm Π d=64mm
Patient Images
with ASSR
MFR d=64mm ASSR d=64mm
• High image quality
• High performance
• Use of available
2D reconstruction
hardware
• 100% detector usage
• Arbitrary pitch
•
•
•
•
•
•
•
Sensation 16 at
0.5 s rotation
16×
× 0.75 mm collimation
pitch 1.0
70 cm in 29 s
1.4 GB rawdata
1400 images
Bruder H, Kachelrieß M, Schaller S. SPIE Med. Imag. Conf. Proc., 3979, 2000
CT-Angiography
Sensation 64 spiral scan with 2⋅⋅32×0.6 mm and 0.375 s
CTA, Sensation 16 at
Data courtesy of Dr. Michael Lell, Erlangen, Germany
Extended Parallel Backprojection (EPBP)
Feldkamp-Type Reconstruction
• Approximate
• Similar to 2D reconstruction:
3D and 4D Feldkamp-Type Image Reconstruction
for Large Cone Angles
volume
•
•
•
•
•
•
– row-wise filtering of the rawdata
– followed by backprojection
• True 3D volumetric
backprojection along the
original ray direction
• Compared to ASSR:
– larger cone-angles possible
– lower reconstruction speed
– requires 3D backprojection hardware
Trajectories: circle, sequence, spiral
Scan modes: standard, phase-correlated
Rebinning: azimuthal + longitudinal + radial
Feldkamp-type: convolution + true 3D backprojection
100% detector usage
Fast and efficient
ray
3D backprojection
Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004
Seite 8
8
Kymo
z
l
β
3-fold
C
longitudinally
rebinned
detector
4-fold
C+B
The complicated
pattern of overlapping
data …
… will become even
more complicated with
phase-correlation.
5-fold
C
Individual voxel-byvoxel weighting and
normalization.
C: Area used for convolution
B: Area used for backprojection
Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004
ECG
• Spiral
• EPBP Std
• p = 0.375
The 180°Condition
• Spiral
• EPBP Std
• p = 1.0
y
ϑ
dϑ w(ϑ ) = π
180°in 3 segments
and
r
x
w(ϑ + kπ ) = 1
• Spiral
• ASSR Std
• p = 1.0
k
The (weighted) contributions to each object point
must make up an interval of 180°and weight 1.
Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004
EPBP Std
EPBP CI, 0% K-K
• 256 slices
• (0/300)
EPBP CI, 50% K-K
Advantages of Multi-Slice Spiral CT
• Image quality independent of scan parameters
• Increase (up to a factor of M)
– of scan speed
– of z-resolution
• New applications
–
–
–
–
–
CT angiography
dynamic studies
virtual endoscopy
cardiac CT
…
Today, complete anatomical regions
are routinely scanned with MSCT
within a few seconds with isotropic
sub-millimeter spatial resolution.
Patient example, 32x0.6 mm, z-FFS, p=0.23, trot=0.375 s.
Seite 9
9
Cardiac CT
Motion Artifacts of the Heart
•
•
•
•
Periodic motion
Synchronisation needed (ECG, Kymogram, others)
Prospective Gating
Phase-correlated reconstruction = Retrospective Gating
– Single-phase (partial scan) approaches, e.g. 180°MCD
– Bi-phase approaches, e.g. ACV (Flohr et al.)
– Multi-phase Cardio Interpolation methods, e.g. 180°MCI (gold-standard)
• Generations
–
–
–
–
Single-slice spiral CT: 180°CD, 180°CI
Multi-slice spiral CT: 180°MCD, 180°MCI
Cone-beam spiral CT: ASSR CD, ASSR CI
Wide cone-beam CT: EPBP
*Med.
Phys. 25(12) 1998, Med. Phys. 27(8) 2000, Proc. Fully 3D 2001, Med. Phys. 31(6) 2004
Maximum Pitch for
Full Phase Selectivity
Synchronization with the Heart Phase
teff = width / heart rate
e.g. 15% / 60bpm = 150ms
Allowed data
ranges
• Voxel illumination must exceed one motion cycle
• Table increment per motion cycle must not exceed
collimation
Heart motion
width
∆c
p ≤ f H t rot
phase
Sync-Signal
• E.g. trot = 0.5 s and fH = 60 bpm implies p < 0.5
• The smaller the pitch value the more segments can
be combined
ECG, Kymogram, ...
R
0
(introduced 1996*)
(introduced 1998*)
(introduced 2000*)
(introduced 2002*)
R
R
2trot
trot
3trot
R
4trot
5trot
6trot
t
Width, and thus teff, corresponds to the FWTM of the phase contribution profile.
Kachelrieß et al., Radiology 205(P):215, (1997)
Partial Scan Reconstruction
Combine n segments
to obtain 180°+δ
δ
of phase-coherent data
for a selected heart phase
1. Detector
2. Detector
3. Detector
4. Detector
Table
position
Use one segment
of 180°+δ
δ data
of phase-coherent data
for a selected heart phase
Multi-Segment Reconstruction
1. Detector
2. Detector
3. Detector
4. Detector
Table
position
Time
Heartbeat 2
Heartbeat 1
1
Time
Heartbeat 3
Partial scan data
(180°+ fan angle)
Heartbeat 2
Heartbeat 1
Effective scan time
teff ≥ trot/2
teff ≥ 200 ms
at trot = 0.4 s
Heartbeat 3
1
2
3
Kachelrieß, Ulzheimer, Kalender, Med. Phys. 27(8):1881-1902 (2000)
Partial scan data
(180°+ fan angle)
Effective scan time
teff ≥ 48 ms
typ. 75-150 ms
at trot = 0.4 s
Kachelrieß, Ulzheimer, Kalender, Med. Phys. 27(8):1881-1902 (2000)
Seite 10
10
Multi-Threaded CT, Dual Source CT
Siemens SOMATOM Definition dual source
cone-beam spiral CT at the IMP
Volume Zoom, 4 × 2.5 mm, 0.5 s, 1998
Sensation 64, 2⋅⋅32 × 0.6 mm, 0.33 s, 2004
Multi-segment 180°MCI reconstruction, 90 bpm
Data courtesy of Stephan Achenbach
CT Basics
From Single-Slice to Cone-Beam Spiral CT
1000
CT-value / HU
• Algorithms
2D filtered backprojection
Spiral z-interpolation
ASSR and EPBP (cone-beam recon.)
Phase-correlated CT (e.g. cardiac CT)
liver
70
600
– Basic parameters
– Detector concepts, tube technology
– Scan trajectories, scan modes
spong.
bone
400
blood
60
pancreas
50
200
40
water
0
fat
kidney
30
-200
20
-400
lungs
ImpactX.ocx V 1.1.0.0
10
-600
0
-800
• Image quality and dose
–
–
–
–
80
800
• Technology
–
–
–
–
What is Displayed?
compact
bone
air
-1000
Spatial resolution (PSF, SSP, MTF)
Relation of noise, dose and resolution
Dose values (CTDI, patient dose)
Dose reduction techniques
CT (r ) =
µ (r ) − µ Water
⋅1000 HU
µ Water
Spatial Resolution 1
out
In-plane resolution
0
in
1
in
0.4 mm
out
0
y
0
(0, 5000)
(0, 1000)
y
x
out
1
in
Std. scan, x/y
z-resolution
0.4 mm
1
0.5 mm
x
UHR scan, x/y
z
x
Std. or UHR scan, x/z
(-750, 1000)
Sensation 64, collimation: 2⋅⋅32×0.6 mm
Seite 11
11
Spatial Resolution 3
Spatial Resolution 2
In-plane resolution
Point Spread Function (PSF), Slice Sensitivity Profile (SSP)
z-resolution
Standard (no zFFS)
FWHM = 1.3 S
0.3 mm
Double zsampling (zFFS)
FWHM = 1.0 S
ImpactX.ocx V 1.1.0.0
0.4 mm
0.5 mm
FWHM
0.6 mm
FWTM
Std. scan, x/y
UHR scan, x/y
Std. or UHR scan, x/z
z
FWHM = Seff = effective slice thickness = freely selectable parameter during image recon.
Sensation 64, collimation: 2⋅⋅32×0.6 mm
Sensation 64, collimation: 2⋅⋅32×0.6 mm
Dependencies of IQ and Dose
Tricks to Improve Resolution
•
•
•
•
• Image quality is determined by spatial resolution
and contrast resolution (image noise)
• Image noise decreases with the square-root of dose
Sharp reconstruction kernels
Lowest possible Seff
Decrease the size of the detector pixels
Oversampling
σ2 ∝
– zFFS
– αFFS
– Detector quarter offset
1
1
∝
D mAs eff
• Dose increases with the fourth power of the spatial
resolution for a given object and image noise
• Use of detector combs
(σ / µ ) 2 ∝
However, image noise becomes crucial!
Noise relative to
the background (=1/SNR)
Dose Calculator
eµ 2R + 1
µ 2 dx 4
Fourth power of the
resolution element size
Patient Dose in CT
Typical Values for 16-Slice Scanners
Head
Thorax
Abdomen
Pelvis
Scan range / mm
120
300
400
200
Scan time / s
0.75
0.5
0.5
0.5
16×0.75
16×0.75
16×0.75
16×0.75
Collimation / mm
Eff. mAs / mAs
320
100
160
160
Critical organ
Brain
Lung
Stomach
Colon
Organ dose / mSv
54.6
11.2
15.7
11.7
Eff. dose / mSv
2.9
3.8
8.2
3.9
Eff. dose / 2.1 mSv
1.4
1.8
3.9
1.9
Routine protocols, 120 kV, male phantom.
Demo version of ImpactDose available at www.vamp-gmbh.de
Seite 12
12
Strategies for Dose Reduction
Standard Display
Potential reasons for an increase:
• Higher volume coverage
• Multiphasic examinations
• More examinations
• Higher spatial resolution
• New special applications
Potential ways to decrease dose:
• New display techniques
• Advanced reconstruction (MAF)
• Automatic exposure control (AEC)
• Optimized spectra
• Dose training (dose tutor)
0,5×0,5×0,5 mm3
C = 50 HU, W = 400 HU
Inside Story (Overexposure), Elvgren, 1959
Tube Current Modulation
Sliding Thin Slab (STS) Display
1 000 000
1 000 000
500
(attenuation: 2000)
0,5×0,5×10 mm3
C = 50 HU, W = 400 HU
20 000
(attenuation: 50)
Constant tube current: High, inhomogeneous noise.
2
σ pixel
= const. ⋅
2
σ projection
,n
n
Tube Current Modulation
Dose Reduction by Tube Current Modulation
Rule of thumb:
The number of quanta reaching
the center of the patient should
be constant for all view angles.
250 000
1 750 000
875
(attenuation: 2000)
5 000
(attenuation: 50)
Constant
total mAs!
Conventional scan: 327 mAs
Modulated tube current: Low, homogeneous noise.
2
σ pixel
= const. ⋅
Online current modulation: 166 mAs
53% dose reduction on average for the shoulder region
49% dose reduction in this case
2
σ projection
,n
Kalender WA et al. Med Phys 1999; 26(11):2248-2253
n
Seite 13
13
Multidimensional
Adaptive Filtering
(MAF)
Automatic Exposure Control (AEC)
(z-dependent + angular dependent tube current modulation)
Standard CT
z
C 40/W 500
a)
• Rawdata based
• Local smoothing of noisy data
(less than 5% modification)
• No loss of spatial resolution
• Efficient
• Noise reduction can be
equivalently converted to dose
reduction
rel. image noise
rel. image noise
z
rel. tube current
rel. tube current
AEC
transaxial filtering
β
a) Low attenuation:
b) High attenuation:
pMAF ( β , α , b) =
C 40/W 500
b)
α
Filter width = 0
Filter width > 0
dβ ′ dα ′ db′ f ∆β ( β − β ′) f ∆α (α − α ′) f ∆b (b − b′) p ( β ′, α ′, b′)
34% mAs reduction with AEC at constant image quality for that specific case
Kachelrieß M, Watzke O, Kalender WA. Med Phys 2001; 28:475-490
Standard 180°MFI
Standard 180°MFI
Noise image (standard 180°MFI)
100%
1% data modified
Adaptive 180°MAF
Adaptive 180°MAF
Noise image (adaptive 180°MAF)
51%
180°MAF relative to 180°MFI:
Noise
left: 61%
center: 63%
right: 60%
upper: 100%
Difference image
Dose
37%
40%
36%
100%
Difference images
Resolution
97%
97%
97%
100%
Noise in the shoulder region typically reduced to 50%...70%.
collimation 4×1 mm, d = 5 mm, (C=0 / W=500)
collimation 4×1 mm, d = 5 mm, (C=0 / W=500)
Summary
Thank You!
• CT technology is further evolving towards
– more slices
– faster rotation times
– higher spatial resolution
• CT algorithms
– reconstruct cone-beam data for any trajectory
– perform phase-correlated imaging (4D)
– significantly reduce artifacts (beam hardening, truncation …)
• CT dose
– is becoming more and more an important issue (also in the US)
– is being reduced by manufacturers‘ efforts (e.g. MAF, AEC)
– can be most significantly reduced by user training
3d
www.fu lly
.org
Seite 14
14