Download Algebra revision exercises(with solutions)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Algebra Revision Exercises
STUDYSmarter
Question 1
For each of the following pairs of terms, state whether they are like or unlike.
(a) 3x, 4x
(m) 11a4 b5 , −900b4 a5
(b) 5xy, 12xy
(n) 3c2 d3 e, −2d2 ec2
(c) 6, 3x
(o) 14x1 , 3x
(d) 7xy, −2yx
(p) 2xyz, −3yz
(e) 14x2 y 2 , 3yx2
(q) 5, −3x0
(f ) 14, 3
(r) −2yx, 3xyz 0
(g) 6x2 , −x2
(s) 2xyz, 3xtyz
(h) x, −x
(t) 14x, 2xy 0 z 0
(i) 4x2 y 3 z, y 3 zx2
(u) 3xy(z + 2), 2xy(z + 2)
(j) −18pq, 3q
(v) 2xy(z − 3)2 , −xy 2 (z − 3)
(k) 14mn, 11m2 n
(w) 14(x − 2)(y + 3)2 , 60(y + 3)2 (x − 2)
(l) 2rs2 , s2 r
(x) 3x3 (y − z)2 w, 2w(y − z)2 x3
Question 2
Simplify each of these expressions.
(a) 5x + 3x
(e) 3x + 4x + 5x
(i) 2xy − 7xy
(b) 17x + x
(f ) 7x − 5x + 2x
(j) 14x2 y + 2x2 y − yx2
(c) 10x − 2x
(g) 16x − 20x + 2x
(k) 19xyz 2 − 20xz 2 y
(d) 15x − x
(h) 9xy + 12xy
(l) 3x2 y 3 z − 15zx2 y 3
G Coates/A Dudek
1
July 2016
Algebra Revision Exercises
STUDYSmarter
Question 3
Simplify each of these expressions.
(a) 5x + 3y + 2x + 8y
(g) 7xyz + 9x − 6y + 3x + 13y − zyx
(b) 14x − 6y + 2x − 3y
(h) x3 + y 3 − x3 − y 3
(c) 4xy + 6x − 2xy − 3x
(i) x + 6 − 4x + 2
(d) 6xy + 14y + yx − 15y
(j) 1 + x + x2 + x3 + x2 + x + 1
(e) 4x2 + 3x2 + 6y − y
(k) 7 − x2 + 4x2 − 4 + 2x2 y
(f ) 2x2 y − 6x + 3yx2 + 4x
(l) 4x2 yz 2 + 6xy 2 z 2 − 15z 2 xy 2 − 19z 2 yx2
Question 4
Calculate the following multiplications of terms.
(a) (3x)(x)
(g) (9r2 )(3r)(r5 )
(b) (5x)(4x)
(h) (6xy)(2x)
(c) (3y 2 )(2y)
(i) (8xy)(2x2 y)
(d) (6x)(2x)(x)
(j) (−xy 2 )(x2 y 2 )
(e) (3x3 )(2x2 )
(k) (−pqr2 )(4qp2 r4 )
(f ) (6r2 )(3r5 )
(l) (−4x2 z 7 y 3 )(−3y 2 xz 2 )(−xyz)
Question 5
Expand each of the following expressions.
(a) 5(x + 2)
(g) q(8 + q)
(b) 6(p + 4)
(h) q 2 (3 + q)
(c) 3(p − 9)
(i) y(7 − y − y 2 )
(d) 2(6 − q)
(j) −y(4y 2 + y)
(e) p(2 + p)
(k) 3y(2y + 7)
(f ) −x(x − 3)
(l) −6y(y − 4)
G Coates/A Dudek
2
July 2016
Algebra Revision Exercises
STUDYSmarter
Question 6
Expand each of the following expressions.
(a) 5x(x + 2)
(g) 3pq(2qp2 + q)
(b) 6xy(3 + 2y)
(h) 9a2 b3 (a3 + b2 )
(c) 4xy(x − 3)
(i) 7xy(4 + x2 y − 6y 3 x)
(d) 2pq(3p − 6q)
(j) −2x2 (4 − x2 y − y 3 x)
(e) 3pq(2pq + p)
(k) 6r4 s7 (−3rs + s4 r7 − 2sr2 + r)
(f ) 4p2 (q 2 − 3p2 )
(l) −3z 3 t(−t5 z + t2 z 7 − 8z 3 t9 − zt4 )
Question 7
Expand each of the following expressions. Simplify your answer (if possible).
(a) (x + 1)(x + 3)
(i) (x − 3)(x − 5)
(b) (x + 2)(x + 5)
(j) (−w − 6)(w − 3)
(c) (y + 3)(y + 3)
(k) (r + 9)(r − 9)
(d) (x + 4)(x + 4)
(l) (z + 3)(−z − 3)
(e) (z + 3)(z − 5)
(m) (5 + z)(z + 3)
(f ) (r − 4)(r + 1)
(n) (x + 5)(4 − x)
(g) (x − 7)(x + 1)
(o) (x − 3)(3 − x)
(h) (p − 1)(p − 2)
(p) (5 − x)(−7 − x)
G Coates/A Dudek
3
July 2016
Algebra Revision Exercises
STUDYSmarter
Question 8
Expand each of the following expressions. Simplify your answer (if possible).
(a) (2x + 1)(x + 3)
(i) (4 + 2x)(3 + 5y)
(b) (m + 2)(4m + 6)
(j) (6 + 8m)(6 − 2x)
(c) (2m + 2)(3m + 4)
(k) (m2 + 1)(m − 3)
(d) (2m − 1)(3m + 4)
(l) (x2 + 3)(x2 + 5)
(e) (3 − 5m)(m + 6)
(m) (x + y)(z + w)
(f ) (5 − m)(2 − 3m)
(n) (3x2 + 3)(2x2 − 4)
(g) (2m + 3)(−3 − 2m)
(o) (3x3 + y)(2x4 − y 2 )
(h) (3 + x)(2 + y)
(p) (3x2 y − xy 2 )(−3x3 y 2 − yx2 )
Question 9
Factorise each of the following expressions.
(a) 15x + 25
(e) 9x2 y 2 + 3xy
(b) 3x2 − 9x
(f ) x + x2 + x3
(c) 4xy + 40x2
(g) 2x + 3y
(d) 7x2 yz − 8y
(h) 16x2 y 2 − 8x2 y + 9y
Question 10
Factorise each of the following quadratic expressions.
(a) x2 + 3x + 2
(h) x2 + 3x − 10
(b) x2 + 5x + 6
(i) x2 + 4x − 5
(c) x2 + 10x + 21
(j) x2 − 3x + 2
(d) x2 + 8x + 16
(k) x2 − 7x + 10
(e) x2 + 4x + 4
(l) x2 − 5x − 6
(f ) x2 + 9x + 20
(m) x2 − 4x + 4
(g) x2 + 13x + 30
(n) x2 − 11x + 24
G Coates/A Dudek
4
July 2016
Algebra Revision Exercises
STUDYSmarter
Question 11
Factorise each of the following quadratic expressions by first factoring out the highest
common factor.
(a) 3x2 + 9x + 6
(h) 11x2 + 33x − 110
(b) 4x2 + 20x + 24
(i) x3 + 3x2 + 2x
(c) 5x2 + 35x + 50
(j) x3 + 5x2 + 6x
(d) 7x2 + 56x + 112
(k) 2x3 + 14x2 + 24x
(e) 2x2 + 16x + 14
(l) 3x4 + 18x3 + 15x2
(f ) 3x2 + 18x + 15
(m) x7 − 4x6 + 4x5
(g) 5x2 + 65x + 150
(n) 4x10 + 20x9 + 24x8
Question 12
Use the difference of two squares identity to factorise each of the following;
(a) x2 − 4
(e) x2 − 100
(i) 49 − x2
(b) x2 − 9
(f ) 4x2 − 9
(j) 9 − x2
(c) x2 − 25
(g) 64x2 − 16
(k) 4 − 25x2
(d) x2 − 1
(h) 81x2 − 36
(l) −16 + 49x2
Question 13
Factorise each of the following by first taking out the highest common factor and then
using the difference of two squares identity.
(a) 3x2 − 27
(e) 3x2 − 300
(i) 50 − 2x2
(b) 2x2 − 18
(f ) 13x2 − 52
(j) 72 − 2x2
(c) 7x2 − 28
(g) 128x2 − 32
(k) 40 − 250x2
(d) 2x2 − 2
(h) 81x2 − 36
(l) −48 + 147x2
G Coates/A Dudek
5
July 2016
Algebra Revision Exercises
STUDYSmarter
Solutions
Question 1
(a) like
(m) unlike
(b) like
(n) unlike
(c) unlike
(o) like
(d) like
(p) unlike
(e) unlike
(q) like (−3x0 = −3 × 1 = −3)
(f ) like
(r) like
(g) like
(s) unlike
(h) like
(t) like
(i) like
(u) like
(j) unlike
(v) unlike
(k) unlike
(w) like
(l) like
(x) like
Question 2
(a) 8x
(e) 12x
(i) −5xy
(b) 18x
(f ) 4x
(j) 15x2 y
(c) 8x
(g) −2x
(k) −xyz 2
(d) 14x
(h) 21xy
(l) −12x2 y 3 z
Question 3
(a) 7x + 11y
(e) 7x2 + 5y
(i) −3x + 8
(b) 16x − 9y
(f ) 5x2 y − 2x
(j) 2 + 2x + 2x2 + x3
(c) 2xy + 3x
(g) 6xyz + 12x + 7y
(k) 3 + 3x2 + 2x2 y
(d) 7xy − y
(h) 0
(l) −15x2 yz 2 − 9xy 2 z 2
G Coates/A Dudek
6
July 2016
Algebra Revision Exercises
STUDYSmarter
Question 4
(a) 3x2
(e) 6x5
(i) 16x3 y 2
(b) 20x2
(f ) 18r7
(j) −x3 y 4
(c) 6y 3
(g) 27r8
(k) −4p3 q 2 r6
(d) 12x3
(h) 12x2 y
(l) −12x4 y 6 z 10
Question 5
(a) 5x + 10
(e) 2p + p2
(i) 7y − y 2 − y 3
(b) 6p + 24
(f ) −x2 + 3x
(j) −4y 3 − y 2
(c) 3p − 27
(g) 8q + q 2
(k) 6y 2 + 21y
(d) 12 − 2q
(h) 3q 2 + q 3
(l) −6y 2 + 24y
Question 6
(a) 5x2 + 10x
(g) 6q 2 p3 + 3pq 2
(b) 18xy + 12xy 2
(h) 9a5 b3 + 9a2 b5
(c) 4x2 y − 12xy
(i) 28xy + 7x3 y 2 − 42x2 y 4
(d) 6p2 q − 12pq 2
(j) −8x2 + 2x4 y + 2x3 y 3
(e) 6p2 q 2 + 3p2 q
(k) −18r5 s8 + 6r11 s11 − 12r6 s8 + 6r5 s7
(f ) 4p2 q 2 − 12p4
(l) 3t6 z 4 − 3t3 z 10 + 24t10 z 6 + 3t5 z 4
Question 7
(a) x2 + 4x + 3
(g) x2 − 6x − 7
(m) z 2 + 8z + 15
(b) x2 + 7x + 10
(h) p2 − 3p + 2
(n) −x2 − x + 20
(c) y 2 + 6y + 9
(i) x2 − 8x + 15
(o) −x2 + 6x − 9
(d) x2 + 8x + 16
(j) (−w2 − 3w + 18
(p) x2 + 2x − 35
(e) z 2 − 2z − 15
(k) r2 − 81
(f ) r2 − 3r − 4
(l) −z 2 − 6z − 9
G Coates/A Dudek
7
July 2016
Algebra Revision Exercises
STUDYSmarter
Question 8
(a) 2x2 + 7x + 3
(i) 10xy + 6x + 20y + 12
(b) 4m2 + 14m + 12
(j) −16mx + 48m − 12x + 36
(c) 6m2 + 14m + 8
(k) m3 − 3m2 + m − 3
(d) 6m2 + 5m − 4
(l) x4 + 8x2 + 15
(e) −5m2 − 27m + 18
(m) xz + xw + yz + wy
(f ) 3m2 − 17m + 10
(n) 6x4 − 6x2 − 12
(g) −4m2 − 12m − 9
(o) 6x7 − 3x3 y 2 + 2x4 y − y 3
(h) xy + 2x + 3y + 6
(p) −9x5 y 3 − 3x4 y 3 + 3x4 y 4 + x3 y 3
Question 9
(a) 5(3x + 5)
(d) y(7x2 z − 8)
(g) cannot be factorised
(b) 3x(x − 3)
(e) 3xy(3xy + 1)
(h) y(16x2 y − 8x2 + 9)
(c) 4x(y + 10x)
(f ) x(1 + x + x2 )
Question 10
(a) (x + 1)(x + 2)
(f ) (x + 4)(x + 5)
(k) (x − 5)(x − 2)
(b) (x + 2)(x + 3)
(g) (x + 10)(x + 3)
(l) (x − 6)(x + 1)
(c) (x + 7)(x + 3)
(h) (x + 5)(x − 2)
(m) (x − 2)2
(d) (x + 4)2
(i) (x + 5)(x − 1)
(n) (x − 8)(x − 3)
(e) (x + 2)2
(j) (x − 2)(x − 1)
G Coates/A Dudek
8
July 2016
Algebra Revision Exercises
STUDYSmarter
Question 11
(a) 3(x + 1)(x + 2)
(f ) 3(x + 1)(x + 5)
(k) 2x(x + 3)(x + 4)
(b) 4(x + 2)(x + 3)
(g) 5(x + 10)(x + 3)
(l) 3x2 2(x + 5)(x + 1)
(c) 5(x + 2)(x + 5)
(h) 11(x + 5)(x − 2)
(m) x5 (x − 2)2
(d) 7(x + 4)2
(i) x(x + 1)(x + 2)
(n) 4x8 (x + 2)(x + 3)
(e) 2(x + 1)(x + 7)
(j) x(x + 2)(x + 3)
Question 12
(a) (x − 2)(x + 2)
(g) (8x − 4)(8x + 4) = 4(2x − 1)(2x + 1)
(b) (x − 3)(x + 3)
(h) (9x − 6)(9x + 6) = 9(x − 2)(x + 2)
(c) (x − 5)(x + 5)
(i) (7 − x)(7 + x)
(d) (x − 1)(x + 1)
(j) (3 − x)(3 + x)
(e) (x − 10)(x + 10)
(k) (2 − 5x)(2 + 5x)
(f ) (2x − 3)(2x + 3)
(l) (7x − 4)(7x + 4)
Question 13
(a) 3(x − 3)(x + 3)
(e) 3(x − 10)(x + 10)
(i) 2(5 − x)(5 + x)
(b) 2(x − 3)(x + 3)
(f ) 13(x − 2)(x + 2)
(j) 2(6 − x)(6 + x)
(c) 7(x − 2)(x + 2)
(g) 32(2x − 1)(2x + 1)
(k) 10(2 − 5x)(2 + 5x)
(d) 2(x − 1)(x + 1)
(h) 9(3x − 2)(3x + 2)
(l) 3(7x − 4)(7x + 4)
Using STUDYSmarter Resources
This resource was developed for UWA students by the STUDYSmarter team for the
numeracy program. When using our resources, please retain them in their original form
with both the STUDYSmarter heading and the UWA crest.
G Coates/A Dudek
9
July 2016
Related documents