Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Algebra Revision Exercises STUDYSmarter Question 1 For each of the following pairs of terms, state whether they are like or unlike. (a) 3x, 4x (m) 11a4 b5 , −900b4 a5 (b) 5xy, 12xy (n) 3c2 d3 e, −2d2 ec2 (c) 6, 3x (o) 14x1 , 3x (d) 7xy, −2yx (p) 2xyz, −3yz (e) 14x2 y 2 , 3yx2 (q) 5, −3x0 (f ) 14, 3 (r) −2yx, 3xyz 0 (g) 6x2 , −x2 (s) 2xyz, 3xtyz (h) x, −x (t) 14x, 2xy 0 z 0 (i) 4x2 y 3 z, y 3 zx2 (u) 3xy(z + 2), 2xy(z + 2) (j) −18pq, 3q (v) 2xy(z − 3)2 , −xy 2 (z − 3) (k) 14mn, 11m2 n (w) 14(x − 2)(y + 3)2 , 60(y + 3)2 (x − 2) (l) 2rs2 , s2 r (x) 3x3 (y − z)2 w, 2w(y − z)2 x3 Question 2 Simplify each of these expressions. (a) 5x + 3x (e) 3x + 4x + 5x (i) 2xy − 7xy (b) 17x + x (f ) 7x − 5x + 2x (j) 14x2 y + 2x2 y − yx2 (c) 10x − 2x (g) 16x − 20x + 2x (k) 19xyz 2 − 20xz 2 y (d) 15x − x (h) 9xy + 12xy (l) 3x2 y 3 z − 15zx2 y 3 G Coates/A Dudek 1 July 2016 Algebra Revision Exercises STUDYSmarter Question 3 Simplify each of these expressions. (a) 5x + 3y + 2x + 8y (g) 7xyz + 9x − 6y + 3x + 13y − zyx (b) 14x − 6y + 2x − 3y (h) x3 + y 3 − x3 − y 3 (c) 4xy + 6x − 2xy − 3x (i) x + 6 − 4x + 2 (d) 6xy + 14y + yx − 15y (j) 1 + x + x2 + x3 + x2 + x + 1 (e) 4x2 + 3x2 + 6y − y (k) 7 − x2 + 4x2 − 4 + 2x2 y (f ) 2x2 y − 6x + 3yx2 + 4x (l) 4x2 yz 2 + 6xy 2 z 2 − 15z 2 xy 2 − 19z 2 yx2 Question 4 Calculate the following multiplications of terms. (a) (3x)(x) (g) (9r2 )(3r)(r5 ) (b) (5x)(4x) (h) (6xy)(2x) (c) (3y 2 )(2y) (i) (8xy)(2x2 y) (d) (6x)(2x)(x) (j) (−xy 2 )(x2 y 2 ) (e) (3x3 )(2x2 ) (k) (−pqr2 )(4qp2 r4 ) (f ) (6r2 )(3r5 ) (l) (−4x2 z 7 y 3 )(−3y 2 xz 2 )(−xyz) Question 5 Expand each of the following expressions. (a) 5(x + 2) (g) q(8 + q) (b) 6(p + 4) (h) q 2 (3 + q) (c) 3(p − 9) (i) y(7 − y − y 2 ) (d) 2(6 − q) (j) −y(4y 2 + y) (e) p(2 + p) (k) 3y(2y + 7) (f ) −x(x − 3) (l) −6y(y − 4) G Coates/A Dudek 2 July 2016 Algebra Revision Exercises STUDYSmarter Question 6 Expand each of the following expressions. (a) 5x(x + 2) (g) 3pq(2qp2 + q) (b) 6xy(3 + 2y) (h) 9a2 b3 (a3 + b2 ) (c) 4xy(x − 3) (i) 7xy(4 + x2 y − 6y 3 x) (d) 2pq(3p − 6q) (j) −2x2 (4 − x2 y − y 3 x) (e) 3pq(2pq + p) (k) 6r4 s7 (−3rs + s4 r7 − 2sr2 + r) (f ) 4p2 (q 2 − 3p2 ) (l) −3z 3 t(−t5 z + t2 z 7 − 8z 3 t9 − zt4 ) Question 7 Expand each of the following expressions. Simplify your answer (if possible). (a) (x + 1)(x + 3) (i) (x − 3)(x − 5) (b) (x + 2)(x + 5) (j) (−w − 6)(w − 3) (c) (y + 3)(y + 3) (k) (r + 9)(r − 9) (d) (x + 4)(x + 4) (l) (z + 3)(−z − 3) (e) (z + 3)(z − 5) (m) (5 + z)(z + 3) (f ) (r − 4)(r + 1) (n) (x + 5)(4 − x) (g) (x − 7)(x + 1) (o) (x − 3)(3 − x) (h) (p − 1)(p − 2) (p) (5 − x)(−7 − x) G Coates/A Dudek 3 July 2016 Algebra Revision Exercises STUDYSmarter Question 8 Expand each of the following expressions. Simplify your answer (if possible). (a) (2x + 1)(x + 3) (i) (4 + 2x)(3 + 5y) (b) (m + 2)(4m + 6) (j) (6 + 8m)(6 − 2x) (c) (2m + 2)(3m + 4) (k) (m2 + 1)(m − 3) (d) (2m − 1)(3m + 4) (l) (x2 + 3)(x2 + 5) (e) (3 − 5m)(m + 6) (m) (x + y)(z + w) (f ) (5 − m)(2 − 3m) (n) (3x2 + 3)(2x2 − 4) (g) (2m + 3)(−3 − 2m) (o) (3x3 + y)(2x4 − y 2 ) (h) (3 + x)(2 + y) (p) (3x2 y − xy 2 )(−3x3 y 2 − yx2 ) Question 9 Factorise each of the following expressions. (a) 15x + 25 (e) 9x2 y 2 + 3xy (b) 3x2 − 9x (f ) x + x2 + x3 (c) 4xy + 40x2 (g) 2x + 3y (d) 7x2 yz − 8y (h) 16x2 y 2 − 8x2 y + 9y Question 10 Factorise each of the following quadratic expressions. (a) x2 + 3x + 2 (h) x2 + 3x − 10 (b) x2 + 5x + 6 (i) x2 + 4x − 5 (c) x2 + 10x + 21 (j) x2 − 3x + 2 (d) x2 + 8x + 16 (k) x2 − 7x + 10 (e) x2 + 4x + 4 (l) x2 − 5x − 6 (f ) x2 + 9x + 20 (m) x2 − 4x + 4 (g) x2 + 13x + 30 (n) x2 − 11x + 24 G Coates/A Dudek 4 July 2016 Algebra Revision Exercises STUDYSmarter Question 11 Factorise each of the following quadratic expressions by first factoring out the highest common factor. (a) 3x2 + 9x + 6 (h) 11x2 + 33x − 110 (b) 4x2 + 20x + 24 (i) x3 + 3x2 + 2x (c) 5x2 + 35x + 50 (j) x3 + 5x2 + 6x (d) 7x2 + 56x + 112 (k) 2x3 + 14x2 + 24x (e) 2x2 + 16x + 14 (l) 3x4 + 18x3 + 15x2 (f ) 3x2 + 18x + 15 (m) x7 − 4x6 + 4x5 (g) 5x2 + 65x + 150 (n) 4x10 + 20x9 + 24x8 Question 12 Use the difference of two squares identity to factorise each of the following; (a) x2 − 4 (e) x2 − 100 (i) 49 − x2 (b) x2 − 9 (f ) 4x2 − 9 (j) 9 − x2 (c) x2 − 25 (g) 64x2 − 16 (k) 4 − 25x2 (d) x2 − 1 (h) 81x2 − 36 (l) −16 + 49x2 Question 13 Factorise each of the following by first taking out the highest common factor and then using the difference of two squares identity. (a) 3x2 − 27 (e) 3x2 − 300 (i) 50 − 2x2 (b) 2x2 − 18 (f ) 13x2 − 52 (j) 72 − 2x2 (c) 7x2 − 28 (g) 128x2 − 32 (k) 40 − 250x2 (d) 2x2 − 2 (h) 81x2 − 36 (l) −48 + 147x2 G Coates/A Dudek 5 July 2016 Algebra Revision Exercises STUDYSmarter Solutions Question 1 (a) like (m) unlike (b) like (n) unlike (c) unlike (o) like (d) like (p) unlike (e) unlike (q) like (−3x0 = −3 × 1 = −3) (f ) like (r) like (g) like (s) unlike (h) like (t) like (i) like (u) like (j) unlike (v) unlike (k) unlike (w) like (l) like (x) like Question 2 (a) 8x (e) 12x (i) −5xy (b) 18x (f ) 4x (j) 15x2 y (c) 8x (g) −2x (k) −xyz 2 (d) 14x (h) 21xy (l) −12x2 y 3 z Question 3 (a) 7x + 11y (e) 7x2 + 5y (i) −3x + 8 (b) 16x − 9y (f ) 5x2 y − 2x (j) 2 + 2x + 2x2 + x3 (c) 2xy + 3x (g) 6xyz + 12x + 7y (k) 3 + 3x2 + 2x2 y (d) 7xy − y (h) 0 (l) −15x2 yz 2 − 9xy 2 z 2 G Coates/A Dudek 6 July 2016 Algebra Revision Exercises STUDYSmarter Question 4 (a) 3x2 (e) 6x5 (i) 16x3 y 2 (b) 20x2 (f ) 18r7 (j) −x3 y 4 (c) 6y 3 (g) 27r8 (k) −4p3 q 2 r6 (d) 12x3 (h) 12x2 y (l) −12x4 y 6 z 10 Question 5 (a) 5x + 10 (e) 2p + p2 (i) 7y − y 2 − y 3 (b) 6p + 24 (f ) −x2 + 3x (j) −4y 3 − y 2 (c) 3p − 27 (g) 8q + q 2 (k) 6y 2 + 21y (d) 12 − 2q (h) 3q 2 + q 3 (l) −6y 2 + 24y Question 6 (a) 5x2 + 10x (g) 6q 2 p3 + 3pq 2 (b) 18xy + 12xy 2 (h) 9a5 b3 + 9a2 b5 (c) 4x2 y − 12xy (i) 28xy + 7x3 y 2 − 42x2 y 4 (d) 6p2 q − 12pq 2 (j) −8x2 + 2x4 y + 2x3 y 3 (e) 6p2 q 2 + 3p2 q (k) −18r5 s8 + 6r11 s11 − 12r6 s8 + 6r5 s7 (f ) 4p2 q 2 − 12p4 (l) 3t6 z 4 − 3t3 z 10 + 24t10 z 6 + 3t5 z 4 Question 7 (a) x2 + 4x + 3 (g) x2 − 6x − 7 (m) z 2 + 8z + 15 (b) x2 + 7x + 10 (h) p2 − 3p + 2 (n) −x2 − x + 20 (c) y 2 + 6y + 9 (i) x2 − 8x + 15 (o) −x2 + 6x − 9 (d) x2 + 8x + 16 (j) (−w2 − 3w + 18 (p) x2 + 2x − 35 (e) z 2 − 2z − 15 (k) r2 − 81 (f ) r2 − 3r − 4 (l) −z 2 − 6z − 9 G Coates/A Dudek 7 July 2016 Algebra Revision Exercises STUDYSmarter Question 8 (a) 2x2 + 7x + 3 (i) 10xy + 6x + 20y + 12 (b) 4m2 + 14m + 12 (j) −16mx + 48m − 12x + 36 (c) 6m2 + 14m + 8 (k) m3 − 3m2 + m − 3 (d) 6m2 + 5m − 4 (l) x4 + 8x2 + 15 (e) −5m2 − 27m + 18 (m) xz + xw + yz + wy (f ) 3m2 − 17m + 10 (n) 6x4 − 6x2 − 12 (g) −4m2 − 12m − 9 (o) 6x7 − 3x3 y 2 + 2x4 y − y 3 (h) xy + 2x + 3y + 6 (p) −9x5 y 3 − 3x4 y 3 + 3x4 y 4 + x3 y 3 Question 9 (a) 5(3x + 5) (d) y(7x2 z − 8) (g) cannot be factorised (b) 3x(x − 3) (e) 3xy(3xy + 1) (h) y(16x2 y − 8x2 + 9) (c) 4x(y + 10x) (f ) x(1 + x + x2 ) Question 10 (a) (x + 1)(x + 2) (f ) (x + 4)(x + 5) (k) (x − 5)(x − 2) (b) (x + 2)(x + 3) (g) (x + 10)(x + 3) (l) (x − 6)(x + 1) (c) (x + 7)(x + 3) (h) (x + 5)(x − 2) (m) (x − 2)2 (d) (x + 4)2 (i) (x + 5)(x − 1) (n) (x − 8)(x − 3) (e) (x + 2)2 (j) (x − 2)(x − 1) G Coates/A Dudek 8 July 2016 Algebra Revision Exercises STUDYSmarter Question 11 (a) 3(x + 1)(x + 2) (f ) 3(x + 1)(x + 5) (k) 2x(x + 3)(x + 4) (b) 4(x + 2)(x + 3) (g) 5(x + 10)(x + 3) (l) 3x2 2(x + 5)(x + 1) (c) 5(x + 2)(x + 5) (h) 11(x + 5)(x − 2) (m) x5 (x − 2)2 (d) 7(x + 4)2 (i) x(x + 1)(x + 2) (n) 4x8 (x + 2)(x + 3) (e) 2(x + 1)(x + 7) (j) x(x + 2)(x + 3) Question 12 (a) (x − 2)(x + 2) (g) (8x − 4)(8x + 4) = 4(2x − 1)(2x + 1) (b) (x − 3)(x + 3) (h) (9x − 6)(9x + 6) = 9(x − 2)(x + 2) (c) (x − 5)(x + 5) (i) (7 − x)(7 + x) (d) (x − 1)(x + 1) (j) (3 − x)(3 + x) (e) (x − 10)(x + 10) (k) (2 − 5x)(2 + 5x) (f ) (2x − 3)(2x + 3) (l) (7x − 4)(7x + 4) Question 13 (a) 3(x − 3)(x + 3) (e) 3(x − 10)(x + 10) (i) 2(5 − x)(5 + x) (b) 2(x − 3)(x + 3) (f ) 13(x − 2)(x + 2) (j) 2(6 − x)(6 + x) (c) 7(x − 2)(x + 2) (g) 32(2x − 1)(2x + 1) (k) 10(2 − 5x)(2 + 5x) (d) 2(x − 1)(x + 1) (h) 9(3x − 2)(3x + 2) (l) 3(7x − 4)(7x + 4) Using STUDYSmarter Resources This resource was developed for UWA students by the STUDYSmarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDYSmarter heading and the UWA crest. G Coates/A Dudek 9 July 2016