Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Factoring Checklist Practice Step 1: check for a GCF…always do this first. After factoring out a gcf (if there is one) proceed to step 2 Step 2: How many terms are there in expression (after factoring out the GCF) 2 terms 3 terms Check to see if it’s the difference of perfect squares Check to see if it’s a perfect square trinomial X2 – 9 –4x2 + 100 36x2 – 25y2 x2 + 10x + 25 9x2 – 24x + 16 81x2 – 18x + 1 A perfect square minus a perfect square 1st and third terms are perfect squares, middle term is twice The product of the square roots YES: factor as 2 quantities: YES: factor as 2 identical quantities, (square root + square root)( square root – square root) (square root + square root) choose sign of middle term NO: Finished NO: Multiply 1st term and third terms. Find factors of The product that either + or – to get the middle term, If you ever have x2 + 9, the expression is prime sign of the third term tells you whether you should + or – Re-write Polynomial so that it has four terms and group. If this doesn’t work, the expression is prime Watch for Multi-tiered problems, where you factor out a GCF then more factoring can be done Remember: If there is a plus in the back, it’s the Wendy’s double Stack 1) GCF: 1) 12x4 + 8x3 2) 36x6y8z2 – 9x3y5z 3) 28x – 16x2 4) 64x8y4 + 40x6y12 5) 3xy6 – 6x4y5 + 2x8y3 2) Difference of Perfect Squares: 6) x2 – 16 7) 9x2 – 25 8) 25x2 – 64 9) 1 – x2 10) –81x2 + 4 11) – 49 + 16x2 12) x2 + 1 3) Perfect Square Trinomials: 13) 9x2 +24x + 16 14) x2 – 2x + 1 15) 16x2 + 8x + 1 16) 81x2 – 90x + 25 17) 25x2 + 60x + 36 18) 64x2 – 144x + 81 4) Trinomials: 19) x2 + 3x + 2 20) x2 – x – 20 21) x2 +4x – 21 22) x2 – 10x + 16 23) 6x2 +x – 1 24) 8x2 – 10x – 3 25) 5x2 – 20x + 12 26) 6x2 + 29x – 5 2 2 27) 7x – 5x – 2 28) 15x – 16x + 4 5) MULTI – TIERED 3 29) 3x – 3x 30) 5x4 – 20x2 31) 3x5 – 3x 32) 54x5 – 24x3 33) 4x3 + 24x2 + 36x 34) 12x5 – 60x4 + 75x3 Factoring Checklist Practice Step 1: check for a GCF…always do this first. After factoring out a gcf (if there is one) proceed to step 2 Step 2: How many terms are there in expression (after factoring out the GCF) 2 terms 3 terms Check to see if it’s the difference of perfect squares Check to see if it’s a perfect square trinomial 2 2 2 2 X –9 –4x + 100 36x – 25y x2 + 10x + 25 9x2 – 24x + 16 81x2 – 18x + 1 A perfect square minus a perfect square 1st and third terms are perfect squares, middle term is twice The product of the square roots YES: factor as 2 quantities: YES: factor as 2 identical quantities, (square root + square root)( square root – square root) (square root + square root) choose sign of middle term NO: Finished NO: Multiply 1st term and third terms. Find factors of The product that either + or – to get the middle term, If you ever have x2 + 9, the expression is prime sign of the third term tells you whether you should + or – Re-write Polynomial so that it has four terms and group. If this doesn’t work, the expression is prime Watch for Multi-tiered problems, where you factor out a GCF then more factoring can be done Remember: If there is a plus in the back, it’s the Wendy’s double Stack 1) GCF: 1) 12x4 + 8x3 2) 36x6y8z2 – 9x3y5z 3) 28x – 16x2 4) 64x8y4 + 40x6y12 5) 3xy6 – 6x4y5 + 2x8y3 2) Difference of Perfect Squares: 6) x2 – 16 7) 9x2 – 25 8) 25x2 – 64 9) 1 – x2 10) –81x2 + 4 11) – 49 + 16x2 12) x2 + 1 3) Perfect Square Trinomials: 13) 9x2 +24x + 16 14) x2 – 2x + 1 15) 16x2 + 8x + 1 16) 81x2 – 90x + 25 17) 25x2 + 60x + 36 18) 64x2 – 144x + 81 4) Trinomials: 19) x2 + 3x + 2 20) x2 – x – 20 21) x2 +4x – 21 22) x2 – 10x + 16 23) 6x2 +x – 1 24) 8x2 – 10x – 3 25) 5x2 – 20x + 12 26) 6x2 + 29x – 5 27) 7x2 – 5x – 2 28) 15x2 – 16x + 4 5) MULTI – TIERED 29) 3x3 – 3x 30) 5x4 – 20x2 31) 3x5 – 3x 32) 54x5 – 24x3 33) 4x3 + 24x2 + 36x 34) 12x5 – 60x4 + 75x3 KEY 1) 4x3(3x + 2) 2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x) 4) 8x6y4(8x2 + 5y8) 5) xy3(3y3 – 6x3y2 + 2x7) 6) (x + 4)(x – 4) 7) (3x + 5)(3x– 5) 8) (5x + 8)(5x – 8) 9) (1 +x)(1 – x) 10) (-9x + 2)( 9x + 2) 11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1) 15) (4x + 1)(4x + 1) 16) (9x – 5)2 2 2 17) (5x + 6) 18) (8x – 9) 19) (x + 2)(x + 1) 20) (x – 5)(x + 4) 21) (x + 7)(x – 3) 22) (x – 8)(x – 2) 23) (2x + 1)(3x – 1) 24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2) 2 2 3 29) 3x(x +1)(x – 1) 30) 5x (x+2)(x – 2) 31) 3x(x +1)(x+1)(x–1) 32) 6x (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3) 34) 3x3(2x–5)(2x–5) KEY 1) 4x3(3x + 2) 2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x) 4) 8x6y4(8x2 + 5y8) 5) xy3(3y3 – 6x3y2 + 2x7) 6) (x + 4)(x – 4) 7) (3x + 5)(3x– 5) 8) (5x + 8)(5x – 8) 9) (1 +x)(1 – x) 10) (-9x + 2)( 9x + 2) 11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1) 15) (4x + 1)(4x + 1) 16) (9x – 5)2 2 2 17) (5x + 6) 18) (8x – 9) 19) (x + 2)(x + 1) 20) (x – 5)(x + 4) 21) (x + 7)(x – 3) 22) (x – 8)(x – 2) 23) (2x + 1)(3x – 1) 24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2) 29) 3x(x +1)(x – 1) 30) 5x2(x+2)(x – 2) 31) 3x(x2 +1)(x+1)(x–1) 32) 6x3 (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3) 3 34) 3x (2x–5)(2x–5) KEY 1) 4x3(3x + 2) 2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x) 4) 8x6y4(8x2 + 5y8) 5) xy3(3y3 – 6x3y2 + 2x7) 6) (x + 4)(x – 4) 7) (3x + 5)(3x– 5) 8) (5x + 8)(5x – 8) 9) (1 +x)(1 – x) 10) (-9x + 2)( 9x + 2) 11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1) 15) (4x + 1)(4x + 1) 16) (9x – 5)2 17) (5x + 6)2 18) (8x – 9)2 19) (x + 2)(x + 1) 20) (x – 5)(x + 4) 21) (x + 7)(x – 3) 22) (x – 8)(x – 2) 23) (2x + 1)(3x – 1) 24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2) 29) 3x(x +1)(x – 1) 30) 5x2(x+2)(x – 2) 31) 3x(x2 +1)(x+1)(x–1) 32) 6x3 (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3) 34) 3x3(2x–5)(2x–5) KEY 1) 4x3(3x + 2) 2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x) 4) 8x6y4(8x2 + 5y8) 5) xy3(3y3 – 6x3y2 + 2x7) 6) (x + 4)(x – 4) 7) (3x + 5)(3x– 5) 8) (5x + 8)(5x – 8) 9) (1 +x)(1 – x) 10) (-9x + 2)( 9x + 2) 11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1) 15) (4x + 1)(4x + 1) 16) (9x – 5)2 2 2 17) (5x + 6) 18) (8x – 9) 19) (x + 2)(x + 1) 20) (x – 5)(x + 4) 21) (x + 7)(x – 3) 22) (x – 8)(x – 2) 23) (2x + 1)(3x – 1) 24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2) 2 2 3 29) 3x(x +1)(x – 1) 30) 5x (x+2)(x – 2) 31) 3x(x +1)(x+1)(x–1) 32) 6x (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3) 34) 3x3(2x–5)(2x–5) KEY 1) 4x3(3x + 2) 2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x) 4) 8x6y4(8x2 + 5y8) 5) xy3(3y3 – 6x3y2 + 2x7) 6) (x + 4)(x – 4) 7) (3x + 5)(3x– 5) 8) (5x + 8)(5x – 8) 9) (1 +x)(1 – x) 10) (-9x + 2)( 9x + 2) 11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1) 15) (4x + 1)(4x + 1) 16) (9x – 5)2 17) (5x + 6)2 18) (8x – 9)2 19) (x + 2)(x + 1) 20) (x – 5)(x + 4) 21) (x + 7)(x – 3) 22) (x – 8)(x – 2) 23) (2x + 1)(3x – 1) 24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2) 29) 3x(x +1)(x – 1) 30) 5x2(x+2)(x – 2) 31) 3x(x2 +1)(x+1)(x–1) 32) 6x3 (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3) 3 34) 3x (2x–5)(2x–5)