Download Factoring Checklist Practice Step 1: check for a GCF…always do this

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Factoring Checklist Practice
Step 1: check for a GCF…always do this first.
 After factoring out a gcf (if there is one) proceed to step 2
Step 2: How many terms are there in expression (after factoring out the GCF)
2 terms
3 terms
Check to see if it’s the difference of perfect squares
Check to see if it’s a perfect square trinomial
X2 – 9
–4x2 + 100
36x2 – 25y2
x2 + 10x + 25
9x2 – 24x + 16
81x2 – 18x + 1
A perfect square minus a perfect square
1st and third terms are perfect squares, middle term is twice
The product of the square roots
YES: factor as 2 quantities:
YES: factor as 2 identical quantities,
(square root + square root)( square root – square root)
(square root + square root) choose sign of middle term
NO: Finished
NO: Multiply 1st term and third terms. Find factors of
The product that either + or – to get the middle term,
If you ever have x2 + 9, the expression is prime
sign of the third term tells you whether you should + or –
Re-write Polynomial so that it has four terms and group.
If this doesn’t work, the expression is prime
Watch for Multi-tiered problems, where you factor out a GCF then more factoring can be done
Remember: If there is a plus in the back, it’s the Wendy’s double Stack
1) GCF: 1) 12x4 + 8x3
2) 36x6y8z2 – 9x3y5z 3) 28x – 16x2
4) 64x8y4 + 40x6y12
5) 3xy6 – 6x4y5 + 2x8y3
2) Difference of Perfect Squares: 6) x2 – 16 7) 9x2 – 25
8) 25x2 – 64
9) 1 – x2
10) –81x2 + 4
11) – 49 + 16x2
12) x2 + 1
3) Perfect Square Trinomials: 13) 9x2 +24x + 16
14) x2 – 2x + 1 15) 16x2 + 8x + 1 16) 81x2 – 90x + 25
17) 25x2 + 60x + 36
18) 64x2 – 144x + 81
4) Trinomials: 19) x2 + 3x + 2 20) x2 – x – 20
21) x2 +4x – 21
22) x2 – 10x + 16
23) 6x2 +x – 1
24) 8x2 – 10x – 3 25) 5x2 – 20x + 12
26) 6x2 + 29x – 5
2
2
27) 7x – 5x – 2
28) 15x – 16x + 4
5) MULTI – TIERED
3
29) 3x – 3x
30) 5x4 – 20x2
31) 3x5 – 3x
32) 54x5 – 24x3
33) 4x3 + 24x2 + 36x 34) 12x5 – 60x4 + 75x3
Factoring Checklist Practice
Step 1: check for a GCF…always do this first.
 After factoring out a gcf (if there is one) proceed to step 2
Step 2: How many terms are there in expression (after factoring out the GCF)
2 terms
3 terms
Check to see if it’s the difference of perfect squares
Check to see if it’s a perfect square trinomial
2
2
2
2
X –9
–4x + 100
36x – 25y
x2 + 10x + 25
9x2 – 24x + 16
81x2 – 18x + 1
A perfect square minus a perfect square
1st and third terms are perfect squares, middle term is twice
The product of the square roots
YES: factor as 2 quantities:
YES: factor as 2 identical quantities,
(square root + square root)( square root – square root)
(square root + square root) choose sign of middle term
NO: Finished
NO: Multiply 1st term and third terms. Find factors of
The product that either + or – to get the middle term,
If you ever have x2 + 9, the expression is prime
sign of the third term tells you whether you should + or –
Re-write Polynomial so that it has four terms and group.
If this doesn’t work, the expression is prime
Watch for Multi-tiered problems, where you factor out a GCF then more factoring can be done
Remember: If there is a plus in the back, it’s the Wendy’s double Stack
1) GCF: 1) 12x4 + 8x3
2) 36x6y8z2 – 9x3y5z 3) 28x – 16x2
4) 64x8y4 + 40x6y12
5) 3xy6 – 6x4y5 + 2x8y3
2) Difference of Perfect Squares: 6) x2 – 16 7) 9x2 – 25
8) 25x2 – 64
9) 1 – x2
10) –81x2 + 4
11) – 49 + 16x2
12) x2 + 1
3) Perfect Square Trinomials: 13) 9x2 +24x + 16
14) x2 – 2x + 1 15) 16x2 + 8x + 1 16) 81x2 – 90x + 25
17) 25x2 + 60x + 36
18) 64x2 – 144x + 81
4) Trinomials: 19) x2 + 3x + 2 20) x2 – x – 20
21) x2 +4x – 21
22) x2 – 10x + 16
23) 6x2 +x – 1
24) 8x2 – 10x – 3 25) 5x2 – 20x + 12
26) 6x2 + 29x – 5
27) 7x2 – 5x – 2
28) 15x2 – 16x + 4
5) MULTI – TIERED
29) 3x3 – 3x
30) 5x4 – 20x2
31) 3x5 – 3x
32) 54x5 – 24x3
33) 4x3 + 24x2 + 36x 34) 12x5 – 60x4 + 75x3
KEY
1) 4x3(3x + 2)
2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x)
4) 8x6y4(8x2 + 5y8)
5) xy3(3y3 – 6x3y2 + 2x7)
6) (x + 4)(x – 4)
7) (3x + 5)(3x– 5)
8) (5x + 8)(5x – 8)
9) (1 +x)(1 – x)
10) (-9x + 2)( 9x + 2)
11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1)
15) (4x + 1)(4x + 1)
16) (9x – 5)2
2
2
17) (5x + 6)
18) (8x – 9)
19) (x + 2)(x + 1)
20) (x – 5)(x + 4)
21) (x + 7)(x – 3) 22) (x – 8)(x – 2)
23) (2x + 1)(3x – 1)
24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2)
2
2
3
29) 3x(x +1)(x – 1)
30) 5x (x+2)(x – 2) 31) 3x(x +1)(x+1)(x–1) 32) 6x (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3)
34) 3x3(2x–5)(2x–5)
KEY
1) 4x3(3x + 2)
2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x)
4) 8x6y4(8x2 + 5y8)
5) xy3(3y3 – 6x3y2 + 2x7)
6) (x + 4)(x – 4)
7) (3x + 5)(3x– 5)
8) (5x + 8)(5x – 8)
9) (1 +x)(1 – x)
10) (-9x + 2)( 9x + 2)
11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1)
15) (4x + 1)(4x + 1)
16) (9x – 5)2
2
2
17) (5x + 6)
18) (8x – 9)
19) (x + 2)(x + 1)
20) (x – 5)(x + 4)
21) (x + 7)(x – 3) 22) (x – 8)(x – 2)
23) (2x + 1)(3x – 1)
24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2)
29) 3x(x +1)(x – 1)
30) 5x2(x+2)(x – 2) 31) 3x(x2 +1)(x+1)(x–1) 32) 6x3 (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3)
3
34) 3x (2x–5)(2x–5)
KEY
1) 4x3(3x + 2)
2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x)
4) 8x6y4(8x2 + 5y8)
5) xy3(3y3 – 6x3y2 + 2x7)
6) (x + 4)(x – 4)
7) (3x + 5)(3x– 5)
8) (5x + 8)(5x – 8)
9) (1 +x)(1 – x)
10) (-9x + 2)( 9x + 2)
11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1)
15) (4x + 1)(4x + 1)
16) (9x – 5)2
17) (5x + 6)2
18) (8x – 9)2 19) (x + 2)(x + 1)
20) (x – 5)(x + 4)
21) (x + 7)(x – 3) 22) (x – 8)(x – 2)
23) (2x + 1)(3x – 1)
24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2)
29) 3x(x +1)(x – 1)
30) 5x2(x+2)(x – 2) 31) 3x(x2 +1)(x+1)(x–1) 32) 6x3 (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3)
34) 3x3(2x–5)(2x–5)
KEY
1) 4x3(3x + 2)
2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x)
4) 8x6y4(8x2 + 5y8)
5) xy3(3y3 – 6x3y2 + 2x7)
6) (x + 4)(x – 4)
7) (3x + 5)(3x– 5)
8) (5x + 8)(5x – 8)
9) (1 +x)(1 – x)
10) (-9x + 2)( 9x + 2)
11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1)
15) (4x + 1)(4x + 1)
16) (9x – 5)2
2
2
17) (5x + 6)
18) (8x – 9)
19) (x + 2)(x + 1)
20) (x – 5)(x + 4)
21) (x + 7)(x – 3) 22) (x – 8)(x – 2)
23) (2x + 1)(3x – 1)
24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2)
2
2
3
29) 3x(x +1)(x – 1)
30) 5x (x+2)(x – 2) 31) 3x(x +1)(x+1)(x–1) 32) 6x (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3)
34) 3x3(2x–5)(2x–5)
KEY
1) 4x3(3x + 2)
2) 9x3y5z(4x3y3z – 1) 3) 4x(7 – 4x)
4) 8x6y4(8x2 + 5y8)
5) xy3(3y3 – 6x3y2 + 2x7)
6) (x + 4)(x – 4)
7) (3x + 5)(3x– 5)
8) (5x + 8)(5x – 8)
9) (1 +x)(1 – x)
10) (-9x + 2)( 9x + 2)
11) (-7 + 4x)(7 + 4x) 12) prime 13) (3x + 4)2 14) (x – 1)(x – 1)
15) (4x + 1)(4x + 1)
16) (9x – 5)2
17) (5x + 6)2
18) (8x – 9)2 19) (x + 2)(x + 1)
20) (x – 5)(x + 4)
21) (x + 7)(x – 3) 22) (x – 8)(x – 2)
23) (2x + 1)(3x – 1)
24) (4x + 1)(2x – 3) 25) (5x – 3)(x – 4) 26) (6x – 1)(x + 5) 27) (7x + 2)(x – 1) 28) (3x – 2)(5x – 2)
29) 3x(x +1)(x – 1)
30) 5x2(x+2)(x – 2) 31) 3x(x2 +1)(x+1)(x–1) 32) 6x3 (3x +2)(3x –2) 33) 4x(x+ 3)(x + 3)
3
34) 3x (2x–5)(2x–5)
Related documents