Download Metal-Ligand Binding in Transition Metal Complexes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
 
 
 

­

€ 
   ‚ƒ„…†‡ˆ
‰ Š

Š   ‹ Œ Ž Ž ‘‹

  
‹





­€

   ‚ƒ „…†  
‚ƒ „…†
‡‡


ˆ
‰
Š‹

‡


Œ
 
Ž



Crystalfieldsplittingsforhexa-auacomplexesofand3
2
+ E
onfiguration
0cm–1
0kJmol–1
+III Electronic
0cm–1
0kJmol–1
4
6
8
9
12600
(11)
–
–
12600
11
13900
(166)
800
93
10400
124
9300
111
800
102
1
20600
243
2
18900
226
3
1830
213
4
21000
21
1300
164
6
18600
222
–
–
8
–
–


 



­€ ­‚ ­ƒ„ ­ƒ„­…„­­‚… ­‚ƒ


†
‡
ˆ
ƒ„‰Š 
  ­
€
 € ‚ ƒ„
‚


–3
10 Dq [Cr(CN)6]
+3
10 Dq [Cr(NH3)6]
10 Dq [Cr(dtp)3]
t2g
–3
eg
10 Dq [CrCl6]
Relative energy
 

Increasing ligand field strength

 ­€ ‚
‚ ‚ € 
 ƒ
„
ƒ  ­
­
…†
‡ˆ
€ƒ
ƒ …€ ‰ …€
Metal-Ligand Binding in Transition Metal Complexes
eg
t2g
Eletrononiurationoa wkchdfd.





  ­

€




€‚
 ­




 

­­
ƒ



‚

„






­
ƒ­


yssgs
Wk f
3
fu
U
S f
FSE
3
3
3
3
1
2
3
– 4Dq
– 8Dq
– 12Dq
Dq
Dq
Dq
Dq
Dq
Dq
Dq
3
fu
U
FSE
1
2
3
– 4Dq
–8 Dq
–12Dq
Dq
Dq
Dq
Dq
Dq
Dq
Dq
3
3
3
3

­
€



‚


ƒ
­„
‚



CRYSTAL FIELD STABILIZATION: STRONG FIELD CASE
 

    ­
 €
‚ƒ€ ‚ƒ € ‚„…†
‡
…† ˆ‰ Š‚
‰
ˆ ‹‚
eg
t2g
A Summary
­Œ
­ˆ
 
 
Ž‘’
TETRAHEDRAL COMPLEXES
‰


 “€“
Metal-Ligand Binding in Transition Metal Complexes
dxy dxz dyz
t2
D tet
dx2 – y2 dz 2 dxy dxz dyz
Free ion
2
2
2
e
dz dx – y
Tetrahedral field


 ­
€ ‚ƒ 
„
…
†
fu
Nub f u FSE
Dq
Dq
Dq
Dq
Dq
Dq
Dq
Dq
Dq
Dq
‡
ˆ…

2
x –y
2
z
1/2 d1
d1
1/2 d1
2
2
1/2 d1
eg
1/2 d1
10 Dq
2
z
x –y
M
d1
2
10 Dq
Z-out (elongated) (a)
xy
d2
2/3 d2
1/3 d2
xz, yz
(a)
xz, yz
t2g
1/3 d2
d2
10 Dq
M
2/3 d2
xy
(b)
Z-in (compressed) (b)

  ­­
2€2 orbitalhasfourlobeswhilstthe2hasonlytwolobespointing
attheligands.Tominimizerepulsionwiththeligands,thesingle
2 orbitals. This is euivalent to splitting the degeneracy of the
­2isoflowerenergy,i.e.,morestable,and2€2isofhigherenergy,
i.e.,lessstable.Thus,thetwoligandsapproachingalongthe ‚ ƒ
„„ H ­+
€€€‚ ‚
­ ­ …† 
‡
ƒƒƒ­
ƒƒ
€

„
„

€
„ƒ
…
ˆ†‰††‰
Š
‹ŒŽ † ‘‡’
„ƒ
A
­
ˆ‚†

ƒ“­ †
 ”
­
ƒ
Œ 
 
z2
2
2
x –y
v1
v2
xz, yz
xy
Absorption
400 400
Wavelength
–1
Relative intensity
Frequency (cm )
18000 15000
12000
10000
500
600
700
800
900
1000
1100







­ €‚
€‚€‚
ƒ€‚
"Hole"
"Hole"
2
2
x –y
b1g
eg
a1g
2
x
xy
b2g
t2g
eg
xz, yz
eg
b2g
a1g
b1g






 ­   €
‚ƒ„        €
‚…­„† ­ ‡ˆ   
‰Š
  
tal-ligandditancinCIIandnIIcompound
172
r2
4200
129
224
Kr
2200
129
4214
14
M
2179
108
2191
120
2209
18
M(H)
4188
115
220
157
CH2 — CH2
H2N
NH2
bite

 
­
€ ‚ƒ„…†ƒ‡‡ € ‚ƒ„ˆ†ƒ‡‡ƒ‚ƒ„
€ ‚ƒ„ˆ†ƒ‡‡ € ‚ƒ„ƒƒ†ƒ‡‡ƒ‚ƒ„
€ ‚ƒ„ƒƒ‡‡ € ‰†ƒ‡‡ƒ‚ƒ„
Š
‹
      

­€
Œ 
‚  H2 O
N
N
N
N
Cu
N
N
Strain
N
Cu
+ en
N
+ 2H2O
N
N
H2O
10
– pK
8
6
4
K1
2 K2
K3
0
Mn
+2
+2
+2
Fe
Co
+2
Ni
+2
Cu
+2
Zn

H2O
N
N
Cu
N
N
N
N
N
H2O
Cu
N
N
N
   
­€‚€ƒ„…  †
2
x –y
2
x –y
2
2
10 Dq
2
z
10 Dq
xy
xy
xz, yz
Cu(II)
z
2
xz, yz
Au(II)
 

  
 ­€
‚
ƒ „…†‡
Absorbance
400
500
600
Wavelength (nm)
700

2
2
dx – y
dz
2
Energy
dxy dxz dyz
Ground state
Excited state
  

 

­

kJ mol
– 1
3000
F
2900
2800
Cl
Lattice energy
2700
Br
2600
l
2500
2400
2300
2200
2100
Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn
  ­
€
€
‚ƒ
4800
2200
4600
2000
4400
1800
4200
1600
(a) M
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
4000
2+
(b) M
3+

 ­ €
+3/5 – 2 /5 – 2 /5 – 2 /5 
 ‚




€
100
Ionic radii (pm)
90
?
80
?
70
?
60
2+
2+
50
Ti
Ca
1
0
2
Ionic radii (pm)
80
2+h
2+
Cr
Mn
2+
2+
2+
Fe Co
4
3
5 6
7
Number of 3d electrons
2+
2+
2+
Ni
Cu
8
9
Zn
10
70
60
3+
3+
3+
50 Sc Ti
V
1
2
0
V
Cr
3
3+
3+
3+
3+
3+
3+
Ca
Mn Fe Co Ni
4
6
5
7
8
9
10
At this point the next electron enters the level, into an orbital directed at the
ligands, repelling them and causing an increase in the effective radius of the
metal. In the case of high-spin ions the increase in the effective radius of the
metal. In the case of high-spin ions the increase in radius occurs with the 








 ­€‚ƒ„­
 ­€‚ƒ…„„ †
‡ˆƒ„ Š
…„
…„
…
…ƒ „
…ƒ „
‰ …‚ƒ „
…„
…ƒ „
‰‚ƒ…„ † ­€‚ ‚­‚ƒ‚ƒ‚‚€„…
  †  ‚ ­  ‡ 
ˆ‰‰‚‡ƒ„ ­‚‡‚­ŠŠ
‚†‚‹
Energy
Ground state
Excited state
For  , and orbitals. When
one electron is excited, the resulting combination can have different energies,
depending on whether the two electrons are occupying overlapping orbitals and
therefore repelling each other. For example, the excited configuration of (),
(), will be lower in energy because the two electrons occupy very different
space, whereas the (), (– and planes.
By calculation, it can be shown that the combination (), ( ), (–
), (– ), ( –
 
dz 2
Least
Energy
dxy
Ground state
Excited state
dx2 – y2
More
Energy
dxy
Ground state
Excited state
Most
Energy
Ground state
Excited state


 ­€
­‚ƒ ­
„­… „­…„ƒ‚­† „ƒ‚‡ˆ‰
Š‰ƒƒ‡€‰‰
 ‰Š€Š‰‹
 ‰ ‰  †‚† ‡ Š‰ € € ‹‰ƒ†‡
‰
Œ ‰Š
Ž
‰ ƒ
2+
(i) [Ni (NH3)6] . Octahedral
8
Ni is in + II Oxidation state, d system.
eg
3d
10 Dq
6
t2g
2
The configuration is t2g eg .
–3
(ii) [Cr (CN)6] Octahedral
3
Cr is in + III Oxidation state, d system
eg
3d
10 Dq
3
0
The configuration is t2g eg .
t2g
2–
(iii) [Ni Cl4] tetrahedral
–
Cr is in + II oxidation state and Cl is weak field ligand.
t2
3d
4
4
The configuration e t2 .
e

 ­  ­
€
‚ ƒƒƒ‚ eg
0
t2g
„…‚ eg
t2g
eg
t2g
  
eg
t2g

  ­
eg
t2g
­ 
eedmpexeeeeypypempexebe
e beeympedoctahral
Hnc,th
lctrons o not air u an follow Huns rul of aiu
ultilicit
e
t = 4/9 0
+ 0.6 0 – 0.4 0
t2
eed – ..m
– ..3
– 1.
ff = ( 2) ­€‚
ƒ
„……………
„ †‡ ˆ‰
 ˆˆ ‡‰
 ‰
Cr(0)
eg
Weak field
< P
4
t2g eg
2
t2g
In octahedral field
eg
Strong field t2g6eg0
0 < P
t2g
eg
Weak field
< P
3
t2g eg
1
t2g
Octahedral field
eg
Story field
< P
4
0
t2g eg
t2g
eg
Weak field
< P
3
t2g eg
0
t2g
In octahedral field
eg
Strong field t 5e 0
2g g
> P
t2g

eg
t2g

   
eg
t2g
­ 
€‚

ƒ
 „ … 
 €‚
†
 ­ …  ‡ 
­ €‚ €
ƒ‚„
…ˆ
‡†‡ ‡ …‰ˆ
‡†‡‡
…ˆ‡† …ˆ‡†‡
…‡†‡ ‡ …ˆ‡†‡
Š‰‹„ ŠŠ‰‹„
ŠŠ‰‹„

ŒŠŒŒŒ
ŒŒŒ 
Œ
ƒ‡
ܠ
Ž ‘
€‚€ €‚

…ˆ
‡†‡‡‡
 €†’ 
 …‰ˆ
‡†‡ ‡‡
 ’ 
  ­€‚ƒ„… ­†
 ‚
 ­
‡ˆ ‰ Š

­ 
Hypothetical complex
with degenerate d-orbitals
Five d-orbitals
(degenerate) in isolated metal ion
+ 0.6 – 0.4 Energy
eg
0
t2 g
 ­€‚ƒ„…  ‚ Š  
eg
eg
t2g
t2g
‚ …ƒ‚ Š­€‚ƒ„…‰ ‹ †
 ‹­  ssuing that light of onl on scific wavlngth is asor a
coorination cooun, utili th following rlationshi of th
visil sctru to trin
Colour
violt
lu
grn
llow
orang
r
      
         
    q
  
   ­ sc (iii) [TiX6] col is violt, what chang in colour woul ou
ct if th ligan , in this col was rlac a ligan,
, that roucs a strongr fil?
(i) = = vogaro€s nur = 62 2
= Planc€s constant = 66 2 rg sc
= vlocit of light c sc
= calori = ‚ rg
Th nrg asor r ol is 2 cal
or 2 ‚ rgs
Putting th valu of , , an , w gt
2 ‚ =
62 26 66 2
rg sc ‚ c sc =
62 2 66 2 2 ‚ = 66 c
Th colour asor is r an th col will grn in
colour
(ii) = sc
=
c sc sc = 66 c
Th colour asor is violt so th col will aar llow
eg
Strong field
t2g
6
Co (III) d
system
(octahedral)
eg
Weak field
t2g



         
 
 
       eg
Story field
t2g
Co (II) d
system
7
eg
Weak field
t2g
 


  ­€ ‚
eg
0
t2g
Conc. HCl
or
HCl
t2
In a weak field
(tetrahedral)
t
e
    
 
  
 ­€­­
‚‚‚‚ 
­ƒ­­„­…†
‚‚‚
 …
 
‚€‡ˆ†
€‚‚‰ƒ‚‰ƒ
Š ‚ € ˆ ‚  ‚ ­  ­ € ƒ ­ƒ 
€€ ‚‚
…
† ‚‚
„ ‚  ‚‚‰ƒ‚‰
d– demeeeyepeeme
ed 
e ed ppe mpexe ee e e
e x d ed e ymme d eey ded.
xp
y
configurationisaoctahralcol
eg
t2g
eee 2 an 2  2 oritals ar unuall occui istortion
(nown as ahn-Tllr istortion) occurs Th ahn-Tllr thor
statsthatannon-linarolculsstinagnratlctronic
statwillunstalanwillunrgososortofistortiontolowr
its str an rov th gnrac an to lowr th nrg
nanoctahralcol,istortionoccursainlfrounualfilling
ofthbbeeeebeexee2b ebe
eeexe.
emmeep
ed
eepye2
oritalanonlctronoccuth 22oritalThus,thtwoligan
along+ d – de e epeed me y e e
deededede.
Energy
eg
t2g
Metal-Ligand Binding in Transition Metal Complexes
Diagraaticall rrsnt for th slitting of th oritals for th
following gotris
(i) Ttrahral
(ii) Octahral
(iii) Ttragonal
(iv) Suar lanar
Slitting of th -oritals for various gotris no (i) (iv) is
shown low
Ttrahral, shrical octahral, ttrahral, suar lanar slitting
of th -oritals for th various gotris
dx 2 – y 2
dx 2y 2
dz2
dxy
dx2 – y2, dz2
Energy
dxy, dxz, dyz
dz2
dz1
dx2 – y2, dz2
dxy, dxz, dyz
dxz, dyz
Tetrahedral
Octahedral
dxz, dyz
Square planar
Tetragonal
How an unair lctrons ar thr in Cr2+, Cr+, F2+, Co+ an
Co2+ in
(i) a string octahral fil an
(ii) a wa octahral fil?
nair lctron in th ions in (i) strong an (ii) wa octahral
fil ar givn in th following tal
N. f E fu
N. f u b
S f
Wk f
S f
Wk f







 
  
­
€
‚
 ƒ ƒ ‚       „  …†††
†
†††   †   † 
  †  †  †
 ‡†‡‚
†
ˆ„
„
 „ 
„ 
 „
‡‡
 †     †††
 ††
  „ † „ 
 † 
 
ˆƒ ƒ ˆˆ

„
 …††††
††† 
  ­€
‚
€
ƒ €

„
€€
…
€

„†„„
††„„
‡
‚ˆ
‰
‚
ƒ

‚Šˆ‹


Š
Š€
… ‚
€
Œ’‘“ ŒŽ‘ Œ”‹“’‘“
ŒŽ’‘ (a)
(b)
(c)
(d)
andthelowestenergyare
thedegeneratepairs,
2 – 2
and2orbitalissufficientlylargetocausepairinginsomecases.
1

8 

8 9

 ­€‚ƒ „…†‡
 ­‚ƒ „…†‡
 ­‚ƒ ˆ…ƒ‡
(a)
(b)
(c)
(I)
(II)
(III)
(IV)
(V)


 ­€‚ƒ„
…† 
 ‡
…† ˆ ˆ ‰‰
ˆŠ‹
ŒŽ‘’ “
… ƒ‰ ”
 …†‚’
‘‹ ’ •Ž†€… …€‚
– ŒŽ ­’ •Ž†€ ……  ƒŒŽ—
‚ ”
‚ ˜’
‹™
……†  ˆ‹‰‰‰ 

 ­ €

‚€
ƒ
„
…†‡‡‡
ˆ…‚‚‰
Š ‹
Œ‚Œ Ž ˆ
‘Œ‚ Žˆ 
’“‰‚Œ ­ ˆ
‰ ­ € ”
‚
‚ŠŠŠ‚Œ­ ­ €‚ ­­ €‚Œ ­ˆ
“ ƒ

’

‰­€
Œ € • ‚Œˆ – €“– €—­ €
Œ­
‚ ˆ
‚ ˜
ˆ … „ ‚‰
‰€
™ 
 ­€‚š


Š ‚Ž
ŠŠ ‚Ž ›
ŠŠŠ ‚Œ­ Ž €
ˆ


 
 ­
€‚ƒ„… †‡ˆ‰Š €
†‡ˆŠ €
‹‡… €ƒ
Œ †‡
 Žˆ‘ Ž‘ 
’
 „ˆŒ ˆ‰
‹
 „ˆŒ …‰
‹
’
 €
ƒ ‹‡… €
ƒ ‹‡…
 „ˆŒ ‹‡… ‰ €
ƒ ‹‡…  €
„ˆŒ ‹‡ˆ ‰ €ƒ„ˆŒ ‹‡ˆ ‰
“ €ƒ„… ‹‡… ‰ €ƒ„… ‹‡… ‰
  ”
­ ’
 €
ƒ„… †‡ˆ‰
 €ƒƒ„… ‹‡ˆ‰
 €

ƒ ‹‡…  €ƒ
†‡ˆ
 ”
’

 ”
” 
„
•ˆ€ƒ‹‡•…€
‹‡–