Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ANSWERS Screening Test 4. 1. C 2. H 3. B 4. H 5. C 6. J 7. A 8. F 9. C 10. G 11. C 12. F 13. B 14. H 15. C 16. J 17. D 18. H 19. B 20. J 21. C 22. H 23. C 24. J 25. B 26. H 27. D 28. G 29. D 30. F 31. C 32. F 33. C 34. J 35. C 36. G 37. D 38. F 39. B 40. J 41. C 42. J Benchmark Test 1 1. C 2. J 3. C 4. F 10. G 11. D 12. F 17. B 18. H 19. D 24. H 25. C 26. G 31. A 32. G 33. A 5. D 6. J 7. B 8. H 9. A 13. C 14. G 15. B 16. J 20. G 21. A 22. J 23. C 27. D 28. G 29. C 30. G 10 in. 6 in. 2 in. 5. Your friend will be on the honor roll. 6. x 5 3 7. 25 8. L M Benchmark Test 2 9. Subtraction Property 1. D 2. G 3. B 4. F 5. C 6. J 7. A 8. H 9. C 10. G 11. A 12. H 13. C 14. H 15. B 16. G 17. C 18. H 19. A 20. H 21. B 22. G 23. C 24. G 25. C 26. H 27. D 28. F 29. C 30. H 31. D 32. G 33. D 10. Benchmark Test 3 1. A 2. G 3. A 4. J 5. B 6. J 7. A 8. G 9. A 10. G 11. C 12. F 13. A 14. F 15. D 16. H 17. B 18. G 19. A 20. H 21. C 22. H 23. B 24. F 25. B 26. G 27. C 28. H 29. B 30. G 31. C 32. G 33. B Benchmark Test 4 1. C 2. G 3. D 4. F 5. C 6. H 7. C 8. G 9. B 10. H 11. A 12. J 13. B 14. J 15. D 16. J 17. B 18. H 19. C 20. J 21. A 22. F 23. B 24. H 25. B 26. F 27. C 28. J 29. B 30. G Benchmark Test 5 Fro 1. 13, 21 2. Answers may vary. Sample: a tiger has four legs but it is not a dog. 3. y 5 2x 2 4 ht nt Rig 11. 70 12. Line b is parallel to line c by the Transitive Property of Parallel Lines. 13. 29 14. Suppose that 2x 1 4 5 6. Subtract 4 from both sides of the equation by the Subtraction Property. This gives an equation of 2x 1 4 2 4 5 6 2 4, which reduces to 2x 5 2. Now divide both sides of the equation by 2 by using the Division Property. This gives an equation of * ) 2x 2 5 , 2 2 which simplifies to x 5 1. 15. AC 16. 12p m 17. Answers may vary. Sample: A student can drive if and only if he or she is over the age of sixteen. If a student can drive, then he or she is over the age of sixteen. If a student is over the age of sixteen, then he or she can drive. 18. 1. C 2. G 3. C 4. H 5. D 6. G 7. B 8. H 9. C 10. H 11. B 12. J 13. B 14. J 15. D 16. G 17. C 18. F 19. B 20. F 21. C 22. H 23. A 24. J 25. B 26. H 27. D 28. F 29. D 30. G 31. C 32. G 33. A 34. F 35. C 36. G Quarter 1 Test, Form G 2 in. 10 in. C A P B / 19. (1, 2.5) 20. y 5 3x 1 1 21. /2 > /4 by the Converse of the Corresponding Angles Theorem or /2 1 /3 5 180 by the Converse of the Same-Side Interior Angles Theorem 22. 2 "17 Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 127 ANSWERS (CONTINUED) 23. The intersection is a point, or there is no intersection. 24. Two lines must not intersect and be in the same plane to be parallel. 25. 40 26. 50 27. 90 28. hypothesis: if you are not at school; conclusion: you are at home 29. If you are at home, then you are not at school. 30. Transitive Property 25. Answers may vary. Sample: 6 4 4 9 6 6 6 9 Quarter 2 Test, Form G 26. x 5 3, y 5 3"2 27. x 5 2, y 5 4 28. 具3, 2 9典 29. 12 in. 30. 8 1. RS 2. 20 3. 3 4. 50 5. 40; 82 6. SSS Postulate 7. SAS Postulate 8. (c 2 a, b) 9. 45 10. /R, /P, /Q 11. AAS, nABC > nABD 12. 133; 47 13. Answers may vary. Sample: You Quarter 4 Test, Form G can use the distance formula to find the lengths of the diagonals AC and DB. If the lengths are equal, then the diagonals are congruent, so the parallelogram is a rectangle. 14. 4 15. Answers may vary. Sample: The diagonals must be perpendicular bisectors of each other, or all sides must be congruent. 16. The orthocenter is the intersection of the three altitudes of a triangle. 17. 2 18. PN . MN 19. HypotenuseLeg Theorem 20. 9 21. BC > BD 22. Suppose that a triangle had more than one right angle. If this were true, then two of the angle measures alone would add up to 180, and the third angle would have a measure that would contradict the Triangle Angle-Sum Theorem. 23. AB, BC, AC 24. 90; 30 25. rhombus 26. 65 27. c, e, b, a, d or e, c, b, a, d 28. No; the midsegment is not half the length of the third side. 29. a kite 30. /R Quarter 3 Test, Form G 1. 14 2. nABC , nJKL by SSS , Theorem 3. nTUV , nWXY by AA , Postulate 4. obtuse 5. 56.3 6. 10.7 7. reflectional symmetry and 180° rotational symmetry (point symmetry) 8. 2 "26 9. sin A 5 8 15 8 ; cos A 5 ; tan A 5 17 17 15 10. A9(7, 2), B9(11, 2), C9(10, 21), D9(6, 21) 11. A9(25, 4), B9(29, 4), C9(28, 1), D9(24, 1) 12. A9(23, 24), B9(27, 24), C9(26, 21), D9(22, 21) 13. 53.9 mi/h; 21.8° south of east 2 14. (3, 3) 15. A 16. Yes; 42 1 62 5 Q 2"13 R , so it is right triangle by the Converse of the Pythagorean Theorem. 17. 4"3 18. 38 19. 6 20. 18.4 21. Check students’ work. 22. No; there will be gaps when the pattern is repeated. 23. A9(22, 6), B9(0, 14), C9(8, 4) 24. 48 ft 1. 268.1 cm3 2. 66.3 cm2 3. 25 4. 32 5. 128 cm2 6. Answers may vary. Sample: Draw d1, a diagonal of the kite that divides it into two congruent triangles. Let d1 represent the base of 1 2 each triangle. The area of one triangle is d1h1. 1 The area of the other triangle is d1h2. Because 2 the triangles are congruent, h1 5 h2. The other diagonal, d2, is the sum of h1 and h2. Therefore, 1 the area of a kite is d1d2. 7. 14.14 cm2 8. 12.5 2 9. a circle with center (22, 23) and radius 5 units 10. 113.1 m2 11. 28p m3 12. 81 m2 13. 6 14. center: (5, 6); radius: 4 10 8 6 4 2 2 2 4 y x 2 4 6 8 10 15. 73.7 16. 92 17. 400 ft3 18. 164 in.3 19. 30 20. 60 21. 270 22. b, c, a, d 23. 310.4 in.2 24. 8 25. (x 2 2)2 1 (y 2 2)2 5 4 26. 188.1 in.2 * ) * ) 27. 2p in. 28. Answers may vary. Sample: QR is tangent to (P. QR is perpendicular to a radius of (P. 29. 284.7 cm2 30. 4% Mid-Course Test, Form G 1. 63; 127 2. 86 3. 19 4. 7 5. parallelogram 6. 12 7. Division Property of Equality 8. /B, /A, /C 9. 36, 36 10a. If it is summer, then it is sunny. 10b. If it is not sunny, then it is not 3 2 summer. 11. y 5 2 x 1 2 12. 26 13. 125°; obtuse 14. 60 15. nCAB > nBDC by SAS. Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 128 ANSWERS (CONTINUED) 11. 14.0 in. 12. 8.9 13. 47.0 cm2 14. 1280 m3 15. two parallel, horizontal lines, one 3 units 16. (a 2b, c) 17a. /3 and /5 or /4 and /6 17b. /1 and /5, /2 and /6, /3 and /7, or /4 and /8 18. 67° above and one 3 units below y 5 22 19. 3 1 y 5 Right 2 Front 4 2 20. 115; 65 21. The circumcenter of a triangle is the point of concurrency of the perpendicular bisectors of the triangle. 22. The orthocenter of a triangle is the point of concurrency of the lines that contain the altitudes of the triangle. 23. /1 > /3 or /2 > /4 or m/1 1 m/4 5 180° or m/2 1 m/3 5 180° 24. Line / is parallel to line p; since lines / and n are both perpendicular to line m, they are parallel to each other. Since lines / and p are both parallel to line n, line / and p are parallel to each other by Transitive Property of Parallel Lines. 25. AC > CF; CB > FD; BA > DC; /ACB > /CFD; /CBA > /FDC; /BAC > /DCF 26. Answers may vary. Sample: A rectangle always has opposite sides parallel, making it a parallelogram. A parallelogram doesn’t always have four right angles, so it is not always a rectangle. 27. AD . CD 28. rectangle 29. rhombus 30. square 31. trapezoid 32. rectangle 33. rhombus 34. 6 35. 48; 90; 42; 57; 33 36. x 5 25; y 5 31 37. (2.5, 1) 38. Soccer practice will be canceled. 39. 118; 34 40. 7.2 41. area 5 452.4 in.2; circumference 5 75.4 in. 42. 74 43. HL 44. not possible 45. SSS 46. AAS 47. not possible 48. SAS 49. ASA or AAS 50. SSS or SAS Final Test, Form G * )* ) 1. 36 2. (2.5, 1) 3. AB 6 CD ; Converse of the Same-Side Interior Angles Theorem 4. Hypotenuse-Leg Theorem; ^ABC > ^EDC 5. (6, 25) 6. 128 cm2 7. 96 in.2 8. reflectional and rotational symmetry 9. D 10. 2 x 4 y 2 2 4 16. 144"3 in.2 17. 15.0 18. F 19. 6.5 20. 7.5 21. 54 cm2 22. 63 m 23. 64 ft 24. 53.2 mi/h; 41.2° west of north 25. 11 26. (22, 22) 27. /A, /C, /B 28. a, c, e, b, d or c, a, e, b, d 29. never 30. sometimes 31. sometimes 32. SAS; ^ACD > ^CAB 33. Yes; the length of AB is half the length of DE. 34. 18 35. 34 36. 92.3 in.2 37. 100 38. 466.5 ft2 39. 199.0 cm2 40. 6 41. 42. 5 < 55.6% 43a. 1809.6 cm2 43b. 7238.2 cm3 9 44a. If two angles have the same measure, then they are congruent. 44b. If two angles are not congruent, then they do not have the same measure. 45a. PQ 45b. /F 46. 13.0 47. MW < 43.5, MX < 34.3 48. 58° 49. 113 1 50. y 5 2 x 1 1 0 3 Quarter 1 Test, Form K 1. 21, 25 2. Answers may vary. Sample: a frog swims, but it is not a fish. 3. y 5 3x 2 2 4. C 5. You will have piano lessons after school. 6. 5 7. 9 8. 12 cm A B 5 cm 5 cm p cm 10p 9. Addition Property Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 129 ANSWERS (CONTINUED) 10. 3 1 11. X9(2, 21), Y9(3, 25), Z9(6, 22) 12. X9(22, 21), Y9(23, 25), Z9(26, 22) 13. 40.3 mi/h; 29.7° north of west 14. (10, 0) 15. Yes; the preimage and image are congruent. 16. Yes; 82 1 152 5 172, so it is right triangle by Right 2 Front the Converse of the Pythagorean Theorem. 17. 5"7 18. x 5 9, y 5 15 19. y 5 14 20. 45° 21. Check students’ work. 22. yes 11. 138 12. Line a is parallel to line b by the following theorem: In a plane, if two lines are perpendicular to the same line, then they are parallel to each other. 13. 90° 14. Substitution Property 15. BF 16. 10p m 17. You live in Tallahassee. You live in the capital of Florida. 18. J 23. X9(0, 23), Y9(3.5, 22), Z9(3, 1) 24. 88 ft / H 25. Check students’ work. 26. 5"2 27. 6"3 28. ,3, 8. 29. 12 in. 30. J Quarter 4 Test, Form K 19. (22, 4) 20. 23 21. G 22. 5 23. a line or no intersection 24. noncoplanar lines that do not intersect 25. 90 26. 60 27. 85 28. hypothesis: 1. 904.8 in.3 2. 63.4 in.2 3. 90 4. 75 5. 4 : 7, 16 : 49 6. 24 square units 7. 150.80 cm3 8. 8 9. a circle two angles have a sum of 180°; conclusion: the angles are supplementary angles 29. B 30. J with center (24, 6) and radius 8 units 10. 245.0 ft2 11. 90p ft3 12. 40 cm2 13a. 5 13b. 9 14. center: (0, 0); radius: 5 y Quarter 2 Test, Form K 4 1. XZ 2. 4 3. 4 4. 56° 5. x 5 85, y 5 60 6. SAS Postulate 7. SSS Postulate 8. (c 1 a, b) 9. 45 10. /C; /A; /B 11. ASA Postulate 12. x 5 142, y 5 38 13. Answers may vary. 2 x Sample: show that the slope of diagonal AC is the negative reciprocal of the slope of diagonal BD. 14. 4 15. D 16. circumcenter 17. 5 18. m/QTR , m/RTS 19. HL Theorem 20. 10 21. /CAB > /DAB 22. Suppose a triangle has more than one obtuse angle. Since the sum of two obtuse angle measures is greater than 180°, the sum of the measures of the angles in the triangle would be greater than 180°. This contradicts the Triangle Angle-Sum Theorem. 23. AB; AC; BC 24. 56° 25. rectangle 1 26. 55° 27. CPCTC 28. Yes; AB 5 MN 2 29. parallelogram 30. /X Quarter 3 Test, Form K 3. nAYM , nXQH by AA , Postulate 4. obtuse 5 12 5 9. sin A 5 ; cos A 5 ; tan A 5 ; 13 13 12 2 4 2 4 15. 90° 16. 104° 17. 128 cm2 18. 114 in.3 19. 133° 20. 133° 21. 180° 22a. 184 in.2 22b. 201.1 ft2 23. 192.5 in.2 24. 11 25. B 7 3 26. 259.8 in.2 27. pft 28. Yes; since 32 1 42 5 52, ^PQR is a right triangle, and PQ ' QR. Therefore, QR is a tangent to the circle. 29. 188.5 cm2 30. 10% Mid-Course Test, Form K 1. D 2. nBRG , nNDK by SAS , Theorem 5. 32.2 6. 12.8 7. line symmetry 8. 4 "5 4 2 1. 29, 211 2. 95 3. 12 4. 16 5. rectangle 6. 11 7. A 8. /T, /R, /S 9. 30 10. Hypothesis: a transversal intersects two parallel lines; conclusion: alternate interior angles are congruent. 10. X9(4, 6), Y9(5, 10), Z9(8, 7) Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 130 ANSWERS (CONTINUED) 11. 4 15. circle with center (1, 0) and radius 3 y y 4 2 2 x 4 2 2 (1, 0) 4 24 22 2 24 12. 14 13. 60°; acute 14. 45 15. nLRT and nLMN; /RLM 16. (0, b) 17a. /2 and /3 or /6 and /7 17b. /2 and /6 or /3 and /7 18. 5 16. 40 m2 17. 12.5 18. H 19. 6.4 20. 8 22. 110 ft 23. 44m 24. ,9, 1. 25. 7 26. (21, 26) 27. /C, /B, /A 28a. vertical angles 28b. CPCTC 29. always 30. Never 31. sometimes 32. SAS 33. 1 34. 5.5 35. 32.5 36. 24.6 cm2 37. 80 38. 200p cm3 39. 28.5 cm2 40. 9.7 19. 2 x 4 22 4 2 2 2 Right 1 41. Front 20. x 5 100, y 5 80 21. incenter 22. centroid 23. J 24. Line l is parallel to line n by the Transitive Property of Parallel Lines. 25. A 26. G 27. MN . QS 28. rhombus 29. kite 30. trapezoid 31. rectangle 32. trapezoid 33. rhombus 34. 7 35. m/1 5 34°, m/2 5 68° 36. 13 37. (1, 2) 38. I have dance lessons. 39. m/1 5 40°, m/2 5 95°, m/3 5 45° 40. 10 41. C < 100.5 in., A < 804.2 in.2 42. m/1 5 54°, m/2 5 63° 43. HL 44. not possible 45. SSS 46. AAS 47. ASA 48. SAS 49. AAS 50. HL Final Test, Form K 1. 45 2. (5, 8) 3. Converse of the Corresponding Angles Postulate 4. Hypotenuse-Leg Theorem 5. (21, 1) 6. 24 ft2 7. 48 cm2 8. rotational and reflectional symmetry 9. B 10. 5 cm 6 cm 11. 13.6 ft 12. 4 13. 120 cm2 14. 1296 cm3 1 5 25% 43a. 282.7 m2 43b. 314.2 m3 44. If 4 two angles are congruent, then they are vertical. 45a. BC 45b. /H 46. 7.1 47. AC < 41.3, CD < 33.4 48. 50° 49. 113 50. y 5 3x 2 10 42. Test-Taking Strategies Writing Gridded Responses 1. 6 2. 5 3. 11.4 4. 326.7 5. 615.75 6. 2.5 7. 12 8. 51 9. 87 10. 690 11. 552.9 12. 13.30 Writing Short Responses 1a. 2 points; all parts are solved, work is shown, and answers are correct. 1b. 0 points; no work shown and answer is incorrect. 1c. 1 point; error in work, but problem is set up correctly, incomplete answer 2a. 0 points; incorrect and incomplete response 2b. 2 points; the measure of each angle is found, all work is shown, and a diagram is complete and correct. 2c. 1 point; correct answer, but did not complete a drawing. 3a. 0 points; incomplete and incorrect response 3b. 1 point; work is shown, however it contains a math error Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 131 ANSWERS (CONTINUED) Writing Extended Responses Interpreting Data 1a. The work shows all steps but there is a minor computational error where 80 is added to 180 instead of subtracted from 180. 1b. Even though the final answer is correct, the problem is not set up correctly as the diagram shows /1 and /3 as alternate interior angles, not corresponding angles. 2. The answer is correct, but there is little work shown. 3. Answers may vary: Sample: 1. C 2. G 3. C 4. J A 1. 108, 78, and 94 2. 40, 60, and 80 3. (6.5, 0) 7 1 , 0) 5. 8, 12, or 16 6. 40 7. 60 8. 22 19 2 1 9. 4 in. 10. 11. 3 12. 7 13. 4 14. 108° 2 4. (2 Drawing a Diagram B (4x 30) Using a Variable 1. rhombus 2. BE 5 ED 5 8 and AE 5 EC 5 24 3. Two sides are 22, and two sides are 14 2x D C 4. Y(28, 2); Z(2, 6) 5. 35°, 35° 6. 79, 79 7. (0, 1), (3, 0) 8. (5, 5) 9. (26, 26), m 5 1 F BD bisects /ABC, therefore m/CBD 5 m/ABD. 2x 5 4x 2 30 x 5 15 m/CBD 5 2(15)° 5 30° m/BDC 5 (4(15) 2 30)° 5 90°. 10. 12 1 6"2 or 20.49 11. x 5 1; each diagonal is 8 12. 120° 13. Two sides are 12 and two sides are 32 Finding Multiple Correct Answers 1. C 2. J 3. C 4. F 5. B 6. G The measure of an exterior angle is the sum of the two remote interior angles. Therefore, m/BCF 5 m/CBD 1 m/BDC 5 30° 1 90° 5 120°. Testing Multiple Choices 4. Answers may vary. Sample: Find the slope of 1a. Answers may vary. Sample: D can be eliminated because 142 5 196 and the length of the side will be less than 14. A can be eliminated because the length of the side will be longer than 7. 1b. C 2a. The angle is just a bit larger than a 30° angle, so using the special right triangle relationships you can eliminate F. The hypotenuse is the longest side so you can eliminate J. 2b. G 3a. The angle is just a little bit smaller than a 30° angle, so using the special right triangle relationships you can eliminate A and D. 3b. B 4a. H and J are obtuse angles. 4b. G 5a. A and B are too small since the 1 area will be greater than ? 7 ? 48. 5b. C 2 6a. The first coordinate has to be 29 so choices G and J can be eliminated. 6b. F 1. B 2. G 3. C 4. F 5. B 6. J 7. C 8. G 9. B 10. F Eliminating Answers the line. 123 2 1 m5 52 52 . 3 2 (23) 6 3 Parallel lines have the same slope. 1 1 y 1 1 5 2 (x 1 1) Substitute m 5 2 and 3 3 (21, 21) in the point-slope formula. 1 1 y1152 x2 3 3 1 4 y52 x2 Subtract 1 from both sides 3 3 to write the equation in slope-intercept form. (3, 3) y 2 (3, 1) x 2 (1, 1) 2 O 2 Choosing “None of These” 1. D; A 5 pr 2 5 60, so r ^ 4.37 cm. C 5 2pr ^ 27.5 cm. 2. J; /2 is a right angle, /3 is complementary to /1, so m/3 5 50°, /4 is supplementary to /1, so m/4 5 140°. Therefore, they are not congruent to /1. 3. C 4. J; only one pair of corresponding sides are shown to be congruent, so SSS and SAS cannot be used. While Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 132 ANSWERS (CONTINUED) two pairs of corresponding angles are shown to be congruent, the corresponding congruent pair of sides are not between the angles, so SAS cannot be used. Only ASA can be used to show that the triangles are congruent. 5. B 6. C 7. J; for all three sets of side lengths, a2 1 b2 , c2, so all three triangles are obtuse. 8. D; the lengths of the legs are 3 and 3"3, so A 5 1 Q 9"3 (3) 3"3 R 5 . 9. G 2 2 Answering Open-Ended Questions 1a. The figure incorrectly shows the two triangles share a common side, not a common angle. All subsequent work is done correctly. 1b. The figure correctly shows two congruent triangles with a common angle, but no work is shown to justify the congruence and the congruence statement and the correspondence of parts is missing. 2. Answers may vary. Sample: Choosing “Cannot Be Determined” B E 1. C 2. G 3. D; need lateral surface area, total surface area, or volume. 4. G 5. B 6. J; need the dimensions of the garden. 7. A 8. J; need the radius. 9. C A Using Estimation 3. Answers may vary. Sample: 1. A 2. F 3. C 4. G 5. B 6. H Let the lines intersect at (1, 1) and let the slope of 1 one line be . The slope of the other line is 22. 2 Equation of the first line: 1 y 2 1 5 (x 2 1) 2 1 1 y215 x2 2 2 1 1 y5 x1 2 2 Equation of the second line: Answering the Question Asked 1. the sum of the x- and the y-coordinates of the reflected point; D 2. the y-coordinate of the reflected point; J 3. the distance of the translated point to the x-axis; B 4. the vector of the translation; G 5. the sum of the x- and y-coordinates of the rotated point; D 6. the difference between the y-coordinate and the x-coordinate of the image after translation; H 7. The length A9B9; B 8. lines of symmetry in the figure; H 9. a false property of a reg. hexagon; C 10. image of (8, 25); G y 2 1 5 22(x 2 1) y 2 1 5 22x 1 2 y 5 22x 1 3 Using Mental Math 1. 4x 1 8 2. 50° 3. 100° 4. m/1 5 115°, m/2 5 65°, m/3 5 65° 5. m/1 5 130°, m/2 5 50° 6. BC 5 10, CE 5 5, DE 5 4 7. 4 8. AC 5 12, m/ABC 5 70° 9. 12 10. 4, 4 "3 11. 30 D C 3 y (1, 1) x 23 21 O 3 23 Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 133 F A N S W E R S : S AT / A C T P R A C T I C E T E S T Multiple Choice 1. A B C D E 12. A B C D E 23. A B C D E 2. A B C D E 13. A B C D E 24. A B C D E 3. A B C D E 14. A B C D E 25. A B C D E 4. A B C D E 15. A B C D E 26. A B C D E 5. A B C D E 16. A B C D E 27. A B C D E 6. A B C D E 17. A B C D E 28. A B C D E 7. A B C D E 18. A B C D E 29. A B C D E 8. A B C D E 19. A B C D E 30. A B C D E 9. A B C D E 20. A B C D E 31. A B C D E 10. A B C D E 21. A B C D E 32. A B C D E 11. A B C D E 22. A B C D E Student-Produced Responses 1. 2 / 5 / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 4 4 4 . 2. 3. 4. 5 / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 . 1 0 8 7 / / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 . / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 . 5. 3 / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 . 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6. 7. 2 0 7 2 0 / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 4 4 4 . / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 . 8. . 7 8 / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 . 9. 64 / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 . 10. 6 / / . . . 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 . 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Prentice Hall Geometry • Progress Monitoring Assessments Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved. 134